### ug[SCIP-Jack, MPI]: A Massively Parallel Steiner Tree Solver

#### Daniel Rehfeldt · Yuji Shinano · Thorsten Koch Zuse Institute Berlin Technische Universität Berlin



UG19, Berlin, January 2019

### The Steiner Tree Problem in Graphs

Given:

- $\triangleright$  G = (V, E): undirected graph
- $\triangleright$   $T \subseteq V$ : subset of vertices
- $\triangleright \ c \in \mathbb{R}_{>0}^{E}$ : positive edge costs



### The Steiner Tree Problem in Graphs

Given:

- $\triangleright$  G = (V, E): undirected graph
- $\triangleright$  **T**  $\subseteq$  **V**: subset of vertices
- $\triangleright \ c \in \mathbb{R}^{E}_{>0}$ : positive edge costs



A tree  $S \subseteq G$  is called Steiner tree in (G, T, c) if  $T \subseteq V(S)$ 

### The Steiner Tree Problem in Graphs

Given:

- $\triangleright$  G = (V, E): undirected graph
- $\triangleright$   $T \subseteq V$ : subset of vertices
- $\triangleright \ c \in \mathbb{R}^{E}_{>0}$ : positive edge costs



A tree  $S \subseteq G$  is called Steiner tree in (G, T, c) if  $T \subseteq V(S)$ 

### Steiner Tree Problem in Graphs (SPG)

Find a Steiner tree S in (G, T, c) with minimum edge costs  $\sum_{e \in E(S)} c(e)$ 

SPG is one of the fundamental combinatorial optimization problems; decision variant is one of Karp's 21  $\mathcal{NP}$ -complete problems.

### Why not using a general MIP solver?

Consider (small-scale) network design instance with:

$$|V| = 12715$$
  
 $|E| = 41264$   
 $|T| = 475$ 

- CPLEX 12.7.1: No optimal solution within 72 hours
- SCIP-Jack: Solves to optimality in 7.5 seconds

For larger problems CPLEX runs out of memory almost immediately (largest real-world instance SCIP-Jack solved so far has 64 million edges, 11 million vertices)



Network telecommunication design for Austrian cities, see *New Real-world Instances for the Steiner Tree Problem in Graphs* (Leitner et al., 2014)



Some real-world applications of Steiner trees:

- design of fiber optic networks
- prediction of tumor evolution
- deployment of drones
- computer vision
- wire routing
- computational biology
- ▷ ...



Rooted prize-collecting Steiner tree problem

E.g. An algorithmic framework for the exact solution of the prize-collecting Steiner tree problem (Ljubic et al., 2006)

Applications

Some real-world applications of Steiner trees:

- design of fiber optic networks
- prediction of tumor evolution
- deployment of drones
- computer vision
- wire routing
- computational biology
- ▷..



Rectilinear Steiner minimum tree problem

E.g. Phylogenetic analysis of multiprobe fluorescence in situ hybridization data from tumor cell populations (Chowdhury et al., 2013)

# Applications

Some real-world applications of Steiner trees:

- $\triangleright$  design of fiber optic networks
- prediction of tumor evolution
- deployment of drones
- computer vision
- wire routing
- computational biology
- ▷ ...



Hop-constrained directed Steiner tree problem

E.g. Local Search for Hop-constrained Directed Steiner Tree Problem with Application to UAV-based Multi-target Surveillance (Burdakov, 2014)



Some real-world applications of Steiner trees:

- $\triangleright$  design of fiber optic networks
- $\,\triangleright\,$  prediction of tumor evolution
- $\triangleright$  deployment of drones
- ▷ computer vision
- $\triangleright$  wire routing

 $\triangleright$  . . .

computational biology



Maximum-weight connected subgraph problem

E.g. Efficient activity detection with max-subgraph search (Chen, Grauman, 2012)

# Applications

Some real-world applications of Steiner trees:

- $\triangleright$  design of fiber optic networks
- prediction of tumor evolution
- b deployment of drones
- computer vision
- write routing
- computational biology
- ▷ ...



Group Steiner tree problem

E.g. Rectilinear group Steiner trees and applications in VLSI design (Zachariasen, Rohe, 2003)



Some real-world applications of Steiner trees:

- design of fiber optic networks
- prediction of tumor evolution
- deployment of drones
- computer vision
- ▷ wire routing
- computational biology
- ▷ ...



Maximum-weight connected subgraph problem

E.g. Solving Generalized Maximum-Weight Connected Subgraph Problems for Network Enrichment Analysis (Loboda et al., 2016)



Some real-world applications of Steiner trees:

- ▷ design of fiber optic networks
- ▷ prediction of tumor evolution
- deployment of drones
- computer vision
- ▷ wire routing

▷ ...

computational biology



Maximum-weight connected subgraph problem

Real-world applications usually require variations of SPG

#### What we wanted: Solver for Steiner tree and many related problems

What we wanted: Solver for Steiner tree and many related problems What we had: an old solver for SPG, Jack-III What we wanted: Solver for Steiner tree and many related problems What we had: an old solver for SPG, Jack-III; based on > transformation into a Steiner arborescence problem and ...



What we wanted: Solver for Steiner tree and many related problems What we had: an old solver for SPG, Jack-III; based on > transformation into a Steiner arborescence problem and ...



... cutting plane algorithm based on flow balance directed-cut formulation:

Formulation

$$\begin{array}{ll} \min c^{T}y \\ y(\delta^{+}(W)) & \geqslant & 1 \\ y(\delta^{-}(v)) & \leqslant & y(\delta^{+}(v)) \\ y(\delta^{-}(v)) & \leqslant & y(\delta^{+}(v)) \\ y(\delta^{-}(v)) & \geqslant & y(a) \\ y(a) & \in & \{0,1\} \\ \end{array} \begin{array}{ll} \text{for all } w \in V \setminus T \\ for \ all \ a \in \delta^{+}(v), v \in V \setminus T \\ y(a) & \in & \{0,1\} \\ \end{array}$$

### Framework



# Some Facts about SCIP

#### $\triangleright$ general setup

- plugin based system
- default plugins handle MIPs and nonconvex MINLPs
- support for branch-and-price and custom relaxations
- $\triangleright~$  documentation and guidelines
  - ▶ more than 500 000 lines of C code, 20% documentation
    - ► 36 000 assertions, 5 000 debug messages
  - HowTos: plugins types, debugging, automatic testing
  - 11 examples and 5 applications illustrating the use of SCIP
  - active mailing list scip@zib.de (300 members)
- ▷ interface and usability
  - user-friendly interactive shell
  - interfaces to AMPL, GAMS, ZIMPL, MATLAB, Python and Java
  - C++ wrapper classes
  - LP solvers: CLP, CPLEX, Gurobi, MOSEK, QSopt, SoPlex, Xpress
  - over 1600 parameters and 15 emphasis settings

### (Some) Universities and Institutes using SCIP



about 8000 downloads per year

# SCIP plus Jack



Development of SCIP-Jack has been joint work with: Gerald Gamrath · Thorsten Koch · Stephen J. Maher · Yuji Shinano

### A Steiner class solver

#### SCIP-Jack can solve SPG and 12 related problems:

| Abbreviation | Problem Name                                               |
|--------------|------------------------------------------------------------|
| SPG          | Steiner tree problem in graphs                             |
| SAP          | Steiner arborescence problem                               |
| RSMT         | Rectilinear Steiner minimum tree problem                   |
| OARSMT       | Obstacle-avoiding rectilinear Steiner minimum tree problem |
| NWSTP        | Node-weighted Steiner tree problem                         |
| NWPTSTP      | Node-weighted partial terminal Steiner tree problem        |
| PCSTP        | Prize-collecting Steiner tree problem                      |
| RPCSTP       | Rooted prize-collecting Steiner tree problem               |
| MWCSP        | Maximum-weight connected subgraph problem                  |
| RMWCSP       | Rooted maximum-weight connected subgraph problem           |
| DCSTP        | Degree-constrained Steiner tree problem                    |
| GSTP         | Group Steiner tree problem                                 |
| HCDSTP       | Hop-constrained directed Steiner tree problem              |



SCIP-Jack works by combining generic and problem specific algorithms:



SCIP-Jack works by combining generic and problem specific algorithms:

- ▷ generic
  - extremely fast separator routine based on new max-flow implementation
  - all general methods provided by SCIP e.g., generic cutting planes
- problem specific
  - efficient transformations to Steiner arborescence problem (needed for applying generic separator)
  - preprocessing and propagation routines
  - primal and dual heuristics

### SCIP-Jack



# Performance of SCIP-Jack for SPG

SCIP-Jack is

- usually between two and three orders of magnitude faster than Jack-III (both using CPLEX 12.7.1 as LP-solver)
- ▷ fastest publicly available solver for SPG
- ▷ also fastest solver for several related problems...



The Parameterized Algorithms and Computational Experiments Challenge fixed-parameter tractable instances; more than 100 participants Setting: 3 tracks, 100 instances in each track, time limit 30 min.

- ▷ Track A: exact, few terminals; results on public instances:
  - ▶ Winner: 94/100 Iwata, Shigemura (NII, Japan)
  - ► SCIP-Jack/SoPlex: 93/100 3<sup>rd</sup> place
  - SCIP-Jack/CPLEX: 100/100
- ▷ Track B: exact, low treewidth; results on public instances:
  - ► SCIP-Jack/SoPlex: 98/100 1<sup>st</sup> place
  - SCIP-Jack/CPLEX: 99/100
  - best other: 84/100
- ▷ Track C: heuristic, mean ratio to best known upper bound:
  - ▶ Winner: 99.92 Ruiz, Cuevas, López, González (CIMAT, Mexico)
  - ► SCIP-Jack/SoPlex: 99.81 2<sup>nd</sup> place
  - SCIP-Jack/CPLEX: 100



#### Prize-collecting Steiner tree problem



### Prize-Collecting Steiner Trees

Given:

- ▷ undirected graph G = (V, E)
- $\triangleright$  vertex costs  $p \in \mathbb{R}_{\geq 0}^V$
- $\triangleright$  edge costs  $c \in \mathbb{R}_{\geq 0}^{E}$

### Prize-Collecting Steiner Tree Problem (PCSTP)

Find a tree  $S \subseteq G$  such that

 $\triangleright \sum_{e \in E(S)} c(e) + \sum_{v \in V \setminus V(S)} p(v)$  is minimized

 $T_{p} := \{v \in V \mid p(v) > 0\}$  are called potential terminals.

### Transformation: PCSPG to SAP



Transformation to SAP ...

- $\triangleright\,$  allows to use powerful cut-separation routine of SCIP-Jack
- $\triangleright\,$  allows to employ strong heuristics based on a dual-ascent algorithm for SAP

### Transformation: PCSPG to SAP



Transformation to SAP ...

- $\triangleright\,$  allows to use powerful cut-separation routine of SCIP-Jack
- $\triangleright\,$  allows to employ strong heuristics based on a dual-ascent algorithm for SAP

#### works, but not enough to be competitive...

### Reduction techniques

Some recent work ...

### Definition

Let  $v_i, v_j \in V$ . Call walk  $W = (v_{i_1}, e_{i_1}, v_{i_2}, e_{i_2}, ..., e_{i_r}, v_{i_r})$  with  $v_{i_1} = v_i$ and  $v_{i_r} = v_j$  prize-constrained  $(v_i, v_j)$ -walk if no  $v \in T_p \cup \{v_i, v_j\}$ contained more than once in W.

### Definition

Define *prize-collecting cost* of W as

$$c_{pc}(W) := \sum_{e \in E(W)} c(e) - \sum_{v \in V(W) \setminus \{v_i, v_j\}} p(v).$$

### Definition

Define *prize-constrained length* of W:

 $I_{pc}(W) := \max\{c_{pc}(W(v_{i_k},v_{i_l})) \mid 1 \leqslant k \leqslant l \leqslant r, \ v_{i_k}, v_{i_l} \in T_p \cup \{v_i,v_j\}\}.$ 

Let  $\mathcal{W}_{pc}(v_i, v_j)$  prize-constrained  $(v_i, v_j)$ -walks define *prize-constrained* distance between  $v_i$  and  $v_j$ :

$$d_{pc}(v_i, v_j) := \min\{I_{pc}(W') \mid W' \in \mathcal{W}_{pc}(v_i, v_j)\}.$$

#### Proposition

Let  $\{v_i, v_j\} \in E$ . If

$$c(\{v_i, v_j\}) > d_{pc}(v_i, v_j)$$

is satisfied, then  $\{v_i, v_j\}$  cannot be contained in any optimal solution.

Prize-constrained concept allows for very powerful reduction tests; dominates previous concept from Uchoa 2006 (Oper. Res. Let.) and generalizes tests known for SPG.

Downside: NP-hard. But: Nice (easy to implement) approximation by an extension of Dijkstra's algorithm.

### Prize-constrained walks (2)

Another use of prize-constrained walks:

### Definition

Let W be prize-constrained  $(v_i, v_j)$  walk. Define *left-rooted* prize-constrained length of W as:

$$I_{pc}^{-}(W) := \max\{c_{pc}(W(v_i, v_{i_k})) \mid v_{i_k} \in V(W) \cap (T_p \cup \{v_j\})\}.$$

### Definition

Define *left-rooted prize-constrained*  $(v_i, v_j)$ -*distance* as:

$$d^-_{pc}(v_i, v_j) := \min\{I^-_{pc}(W') \mid W' \in \mathcal{W}_{pc}(v_i, v_j)\}.$$

#### Proposition

Let  $v_i, v_i \in V$ . If

$$p(v_i) > d^-_{pc}(v_i, v_j),$$

then every optimal solution that contains  $v_i$  also contains  $v_i$ .

### Using left-rooted prize-constrained walks



- ▷ Use prize-constrained walks to identify terminals t<sub>i</sub> that need to be part of all optimal solutions
- ▷ ...allows for better transformation to SAP:

INPUT: RPCSTP (V, E,  $T_f$ , c, p) and  $t_p$ ,  $t_q \in T_f$   $T_f := \{t_1, t_2, ..., t_z\}$  fixed terminals OUTPUT: SAP

- 1. Set V' := V,  $A' := \{(v, w) \in V' \times V' \mid \{v, w\} \in E\}$ , c' := c,  $r' := t_q$ .
- 2. For each  $i \in \{1, ..., z\}$ : 2.1 add node  $t'_i$  to V', 2.2 add arc  $(t_i, t'_i)$  of weight 0 to A', 2.3 add arc  $(t_p, t'_i)$  of weight  $p(t_i)$  to A'.
- 3. Define set of terminals  $T' := \{t'_1, ..., t'_z\} \cup T_f$ .
- 4. **Return** (V', A', T', c', r').



We have recently proved: Choice of  $t_p$ ,  $t_q$  does not change LP value! But: Can have strong impact in practival solving, natural candidate for UG racing ramp up parameter!

### Prize-constrained walks in branch-and-cut

- > preprocessing
- ▷ probing
- > propagation
- ▷ cutting planes
- primal heuristics
- b dual heuristics
- ⊳ B&B

We can exploit that when using UG!

### Performance of SCIP-Jack on PCSTP

Many PCSTP solvers introduced in the literature lately, the two best:

- ▷ Fischetti et. al. 2017 (Math. Prog. C)
- ▷ Leitner et. al. 2018 (INFORMS J. Comput.) ... stronger by far

|          |     | mean  | time [s]  | max. 1      | time [s] | # solved |    |
|----------|-----|-------|-----------|-------------|----------|----------|----|
| Test set | #   | L18   | SJ        | L18         | SJ       | L18      | SJ |
| JMP      | 34  | 0.0   | 0.0       | 0.0         | 0.0      | 34       | 34 |
| Cologne1 | 14  | 0.0   | 0.0       | 0.1         | 0.0      | 14       | 14 |
| Cologne2 | 15  | 0.1   | 0.1       | 0.2         | 0.1      | 15       | 15 |
| CRR      | 80  | 0.1   | 0.1       | 5.7         | 1.1      | 80       | 80 |
| ACTMOD   | 8   | 0.9   | 0.3       | 3.5         | 1.5      | 8        | 8  |
| E        | 40  | 1.8   | 0.2       | >3600       | 34.5     | 37       | 40 |
| HANDBI   | 14  | 36.5  | 14.9      | >3600       | >3600    | 12       | 13 |
| HANDBD   | 14  | 34.1  | 13.3      | >3600       | >3600    | 13       | 13 |
| 1640     | 100 | 8.7   | 6.1       | >3600       | >3600    | 90       | 91 |
| PUCNU    | 18  | 278.9 | 80.2      | >3600       | >3600    | 7        | 11 |
| Н        | 14  | 488.7 | 477.4     | >3600       | >3600    | 4        | 5  |
|          |     |       | SJ - SCIF | P-Jack      |          |          |    |
|          |     | L18 - | Leitner e | et. al. 201 | 18       |          |    |

- SCIP-Jack often more than two or three orders of magnitude faster than next best solver (from Fischetti et. al. 2017, Math. Prog. C).
   E.g. max. time on Cologne2:
  - Fischetti et. al.: > 200 seconds
  - ► SCIP-Jack: < 0.1 seconds
- Recent PCSTP improvements of SCIP-Jack allowed us to solve two and improve best known solutions for more than one third of unsolved DIMACS 2014 instances.

# Parallelization of SCIP-Jack by UG

- ▷ UG framework to parallelize B&B search both in shared, ug[SCIP-Jack, C++11 threads], and distributed, ug[SCIP-Jack, MPI], environments.
- ▷ Parallelization can be realized with a few lines of code.
- ▷ ... but to improve performance both UG and SCIP-Jack had to be extended.
- Difficulties:
  - Long running time in root node.
  - Special branching.
  - Distributing problem specific preprocessing effects.

SCIP-Jack branches on vertices of the graph. Including vertex *v* corresponds to the constraint:

$$\sum_{a\in\delta^-(v)}x_a=1$$

Excluding vertex v corresponds to constraint:

$$\sum_{a\in\delta^-(v)\cup\delta^+(v)}x_a=0$$

added new features to UG to allow branching on constraints
 ...but (in particular for PCSTP) we need to adapt underlying graph!

- SCIP-Jack/UG transfers branching history together with subproblem. SCIP-Jack changes underlying graph (e.g. deletes vertices).
- Improves finding locally valid solutions and helps cut generation.
   Local cuts also transferred by UG.
- Using branching history for separation and heuristics, we got speed-up of about 30% with 32 threads.

Strong point of UG: presolving of subproblems during branch-and-bound.

Problem:

- ▷ For Steiner tree problems MIP presolving remarkably unsuccessful.
- Complex Steiner reduction techniques not easy to reflect in IP. Thus Steiner tree solvers only perform reductions to delete vertices and edges during B&B.

We make use of following observation:

### Aggressive presolving of subproblems(2)

Each SCIP-Jack Steiner tree reduction transforms SPG (V, E, T, c) to SPG (V', E', T', c') and provides function  $p : E' \to \mathcal{P}(E)$  such that for each (optimal) solution  $S' \subseteq E'$  to transformed problem, set  $\bigcup_{e \in S'} p(e)$  is (optimal) solution to original problem.

### Observation

Let (V, E, T, c), (V', E', T', c'), and p as above. Define  $E'' := \bigcup_{e \in E'} p(e)$ ,  $V'' := \{v \in V \mid \exists (v, w) \in E'', w \in V\}$ ,  $T'' := \{t \in T \mid \exists (t, w) \in E'', w \in V\}$ ,  $c'' := c|_{E''}$ . Each (optimal) solution to (V'', E'', T'', c'') is (optimal) solution to (V, E, T, c). Observation allows us to perform aggressive presolving whenever new subproblems are initialized. About 25% speed-up with 32 threads and improved scaling behaviour.

Racing ramp-up with customized racing paramaters (new feature of UG) is also used.

# Shared memory results for PCSTP

| Threads               | i640-115 | i640-141 | cc10-2nu | cc7nu |  |  |  |  |
|-----------------------|----------|----------|----------|-------|--|--|--|--|
| 1                     | 201      | 809      | 812      | 4,333 |  |  |  |  |
| 8                     | 102      | 314      | 311      | 1,922 |  |  |  |  |
| 16                    | 80       | 210      | 200      | 1,023 |  |  |  |  |
| 32                    | 78       | 110      | 167      | 843   |  |  |  |  |
| 64                    | 79       | 101      | 165      | 723   |  |  |  |  |
| root time             | 15       | 28       | 107      | 55    |  |  |  |  |
| $\max \#$ solvers     | 13       | 48       | 34       | 64    |  |  |  |  |
| first max active time | 55       | 152      | 211      | 301   |  |  |  |  |
| All times in seconds  |          |          |          |       |  |  |  |  |

We performed experiments on PUC, the most difficult Steiner tree test set: 29 of 50 instances have remained unsolved.

SCIP-Jack (sequential) is currently the strongest solver on PUC:

- $\triangleright$  # instances solved in one hour:
  - ▶ 13 by SCIP-Jack:
  - 12 by best other (Polzin, Vahdati Daneshmand, 2014)<sup>1</sup>
- $\triangleright~\#$  instances solved in 12 hours:
  - ▶ 18 by SCIP-Jack:
  - ▶ 13 by best other (Polzin, Vahdati Daneshmand, 2014)

<sup>2</sup>Run time is scaled, as solver is not publicly available

- Two years ago on the PUC test set ug[SCIP-Jack, MPI]:
- ▷ improved primal bounds for 14 instances
- ▷ solved three instances to optimality for first time

In recent computational experiments we were able to

- ▷ improve two best known primal bounds
- $\triangleright\,$  solve one previously unsolved instance

# Solving hc9p

| Table 1: Statistics for so | lving hc9p on | supercomputers |
|----------------------------|---------------|----------------|
|----------------------------|---------------|----------------|

| Dun             | Computer           | Caraa          | Time         | Idle      | Trong       | Primal bound  | Dual bound    | Gap           | Nodas         | Onen nodes  |         |
|-----------------|--------------------|----------------|--------------|-----------|-------------|---------------|---------------|---------------|---------------|-------------|---------|
| Kun Computer Co |                    | Coles          | (sec.)       | (%)       | Trans.      | (Upper bound) | (Lower bound) | (%)           | Inodes        | Open nodes  |         |
| 1               | ISM                | 72             | 604,796      | < 0.3     | 738         | 30,242.0000   | 29,879.3721   | 1.21          | 0             | 0           |         |
| 1               | 131/1              | 12             | (317)        | 0.5       | 150         | 30,242.0000   | 30,058.9366   | 0.61          | 110,012,624   | 1,257,112   |         |
| 2 ISM           | IGM                | 2,304          | 604 704      | < 1.5     | < 1.5       | 070 605       | 30,242.0000   | 30,058.7930   | 0.61          | 0           | 15      |
|                 | 131/1              |                | 004,794      |           | 979,095     | 30,242.0000   | 30,102.7556   | 0.46          | 3,758,532,600 | 723,167     |         |
| 2               | 2 HI DN III 24 574 | 24 576         | 1 576 86 336 | 6 < 17    | 8 811 512   | 30,242.0000   | 30,102.6645   | 0.46          | 0             | 35          |         |
| J ILKN III      | 24,570             | 10 00,550      | <b>1</b> .7  | 0,011,012 | 30,242.0000 | 30,116.3592   | 0.42          | 2,402,406,311 | 575,678       |             |         |
| 4 HLRN          | III DN III         | I 12,288       | 42 100       | < 1.5     | < 1.5       | 1 700 027     | 30,242.0000   | 30,115.3331   | 0.42          | 0           | 3,709   |
|                 | HLKN III           |                | 12,200 43,15 | 45,199    |             | 1,709,027     | 30,242.0000   | 30,120.4801   | 0.40          | 664,909,985 | 602,323 |
| 5 III DN III    | 12 200             | 12 289 119 250 | 1.5          | 0.159.020 | 30,242.0000 | 30,120.4801   | 0.40          | 0             | 285           |             |         |
| 3               | ILKN III           | 12,200         | 110,239      | 1.5       | 9,158,920   | 30,242.0000   | 30,242.0000   | 0.00          | 1,677,724,126 | 0           |         |

Supercomputers used:

- ISM: HPE SGI 8600 with 384 compute nodes, each node has two Intel Xeon Gold 6154 3.0GHz CPUs(18 cores×2) sharing 384GB of memory, and Infiniband (Enhanced Hypercube) interconnect
- HLRN III: Cray XC40 with 1872 compute nodes, each node with two 12-core Intel Xeon Ivy- Bridge/Haswell CPUs sharing 64 GiB of RAM, and with Aries interconnect

# How open nodes and active solvers evolved (hc9p)



Figure 1: Evolution of computation for solving hc9p by using 12,288 cores (Run 5)

# Solving hc11p

| Run Computer | Coras             | Time                   | Idle           | Trong        | Primal bound | Dual bound    | Gap           | Nodes     | Onen nodes  |            |
|--------------|-------------------|------------------------|----------------|--------------|--------------|---------------|---------------|-----------|-------------|------------|
|              | Computer          | Cores                  | (sec.)         | (%)          | frans.       | (Upper bound) | (Lower bound) | (%)       | induces     | Open nodes |
| 1.1          | ISM               | 72                     | 604,799        | < 0.3        | 71           | 119,492.0000  | 117,388.8528  | 1.79      | 0           | 0          |
| 1.1 15101    | 131/1             | 12                     | (2,558)        | < 0.5        | /1           | 119,297.0000  | 117,496.5470  | 1.53      | 4,314,198   | 1,109,629  |
| 1.2          |                   | 12 299                 | 43,149         | < 0.5        | 21 204       | 119,297.0000  | 117,388.7971  | 1.63      | 0           | 0          |
| 1.2 ILKN III | 12,200            | (7,164)                | < 0.5   51,504 | 119,297.0000 | 117,426.2226 | 1.59          | 28,491,470    | 5,433,482 |             |            |
| 2            | 2 HLRN III 43,000 | I DN III 42 000 86 354 | < 1.0          | 96 152       | 119,297.0000 | 117,426.2226  | 1.59          | 0         | 103         |            |
|              |                   | 45,000                 | 00,554         | < 4.9        | 00,152       | 119,297.0000  | 117,468.8459  | 1.56      | 267,513,609 | 40,499,188 |

 Table 2: Statistics for solving hcllp on supercomputers

#### Supercomputers used:

- ISM: HPE SGI 8600 with 384 compute nodes, each node has two Intel Xeon Gold 6154 3.0GHz CPUs(18 cores×2) sharing 384GB of memory, and Infiniband (Enhanced Hypercube) interconnect
- HLRN III: Cray XC40 with 1872 compute nodes, each node with two 12-core Intel Xeon Ivy- Bridge/Haswell CPUs sharing 64 GiB of RAM, and with Aries interconnect

# How open nodes and active solvers evolved (hc11p)



Figure 2: Evolution of computation for solving hcllp by using 43,000 cores (Run 2)

We plan to

- ▷ (considerably) improve sequential performance of both SPG and related problems
- ▷ add internal shared memory parallelizations to SCIP-Jack And:
- ▷ solve more open PUC instances with ug[SCIP-Jack, MPI]
- ▷ solve open instances of related problems with ug[SCIP-Jack, MPI]

We plan to

- ▷ (considerably) improve sequential performance of both SPG and related problems
- ▷ add internal shared memory parallelizations to SCIP-Jack And:
- ▷ solve more open PUC instances with ug[SCIP-Jack, MPI]
- ▷ solve open instances of related problems with ug[SCIP-Jack, MPI]

# Thank you!

### Some references

- ▷ Gamrath, Koch, Maher, Rehfeldt, Shinano: *SCIP-Jack A solver for STP and variants with parallelization extentions*, Math. Prog. Comp. (2017)
- Rehfeldt, Koch: Transformations for the Prize-Collecting Steiner Tree Problem and the Maximum-Weight Connected Subgraph Problem to SAP, J. of Comp. Math. (2018)
- Rehfeldt, Koch: Reduction-based exact solution of prize-collecting Steiner tree problems ZR 18-55 (2018)
- Shinano, Rehfeldt, Koch: Building Optimal Steiner Trees on Supercomputers by using up to 43,000 Cores ZR 18-58 (2018)
- Rehfeldt, Koch, Maher, Reduction Techniques for the Prize-Collecting Steiner Tree Problem and the Maximum-Weight Connected Subgraph Problem, Networks (2019, in press)
- Rehfeldt, Koch: Combining NP-Hard Reduction Techniques and Strong Heuristic in an Exact Algorithm for the Maximum-Weight Connected Subgraph Problem SIAM J. Opt. (2019, in press)

SCIP Opt. Suite: http://scip.zib.de