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The Steiner Tree Problem in Graphs

Given:
. G = (V , E ): undirected graph
. T ⊆ V : subset of vertices
. c ∈ RE

>0: positive edge costs

A tree S ⊆ G is called Steiner tree in (G , T , c) if T ⊆ V (S)

Steiner Tree Problem in Graphs (SPG)
Find a Steiner tree S in (G , T , c) with minimum edge costs

∑
e∈E(S)

c(e)

SPG is one of the fundamental combinatorial optimization problems;
decision variant is one of Karp’s 21 NP-complete problems.
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Why not using a general MIP solver?
Consider (small-scale) network
design instance with:
|V | = 12 715
|E | = 41 264
|T | = 475

. CPLEX 12.7.1: No optimal
solution within 72 hours

. SCIP-Jack: Solves to optimality
in 7.5 seconds

For larger problems CPLEX runs out
of memory almost immediately
(largest real-world instance
SCIP-Jack solved so far has 64
million edges, 11 million vertices)

Network telecommunication design for
Austrian cities, see New Real-world
Instances for the Steiner Tree Problem
in Graphs (Leitner et al., 2014)
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Applications

Some real-world applications of Steiner trees:

. design of fiber optic networks

. prediction of tumor evolution

. deployment of drones

. computer vision

. wire routing

. computational biology

. . . .
Rooted prize-collecting Steiner tree
problem

E.g. An algorithmic framework for the exact solution of the prize-collecting
Steiner tree problem (Ljubic et al., 2006)

Thorsten Koch · Daniel Rehfeldt 4 / 46



Applications

Some real-world applications of Steiner trees:

. design of fiber optic networks

. prediction of tumor evolution

. deployment of drones

. computer vision

. wire routing

. computational biology

. . . .
Rectilinear Steiner minimum tree
problem

E.g. Phylogenetic analysis of multiprobe fluorescence in situ hybridization
data from tumor cell populations (Chowdhury et al., 2013)
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Applications

Some real-world applications of Steiner trees:

. design of fiber optic networks

. prediction of tumor evolution

. deployment of drones

. computer vision

. wire routing

. computational biology

. . . .
Hop-constrained directed Steiner tree
problem

E.g. Local Search for Hop-constrained Directed Steiner Tree Problem with
Application to UAV-based Multi-target Surveillance (Burdakov, 2014)
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Applications

Some real-world applications of Steiner trees:

. design of fiber optic networks

. prediction of tumor evolution

. deployment of drones

. computer vision

. wire routing

. computational biology

. . . .

Maximum-weight connected subgraph
problem

E.g. Efficient activity detection with max-subgraph search
(Chen, Grauman, 2012)

Thorsten Koch · Daniel Rehfeldt 4 / 46



Applications
Some real-world applications of Steiner trees:

. design of fiber optic networks

. prediction of tumor evolution

. deployment of drones

. computer vision

. write routing

. computational biology

. . . .
Group Steiner tree problem

E.g. Rectilinear group Steiner trees and applications in VLSI design
(Zachariasen, Rohe, 2003)
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Applications

Some real-world applications of Steiner trees:

. design of fiber optic networks

. prediction of tumor evolution

. deployment of drones

. computer vision

. wire routing

. computational biology

. . . .

Maximum-weight connected subgraph
problem

E.g. Solving Generalized Maximum-Weight Connected Subgraph Problems
for Network Enrichment Analysis (Loboda et al., 2016)
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Applications

Some real-world applications of Steiner trees:

. design of fiber optic networks

. prediction of tumor evolution

. deployment of drones

. computer vision

. wire routing

. computational biology

. . . .

Maximum-weight connected subgraph
problem

Real-world applications usually require variations of SPG
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How it started...Jack

What we wanted: Solver for Steiner tree and many related problems

What we had: an old solver for SPG, Jack-III; based on
. transformation into a Steiner arborescence problem and ...
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Formulation

... cutting plane algorithm based on flow balance directed-cut
formulation:

Formulation

min cT y
y(δ+(W )) > 1 for all W ⊂ V , r ∈W , (V \W ) ∩ T 6= ∅

y(δ−(v)) 6 y(δ+(v)) for all v ∈ V \ T
y(δ−(v)) > y(a) for all a ∈ δ+(v), v ∈ V \ T

y(a) ∈ {0, 1} for all a ∈ A
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Framework
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Some Facts about SCIP
. general setup

I plugin based system
I default plugins handle MIPs and nonconvex MINLPs
I support for branch-and-price and custom relaxations

. documentation and guidelines
I more than 500 000 lines of C code, 20% documentation

I 36 000 assertions, 5 000 debug messages
I HowTos: plugins types, debugging, automatic testing
I 11 examples and 5 applications illustrating the use of SCIP
I active mailing list scip@zib.de (300 members)

. interface and usability
I user-friendly interactive shell
I interfaces to AMPL, GAMS, ZIMPL, MATLAB, Python and Java
I C++ wrapper classes
I LP solvers: CLP, CPLEX, Gurobi, MOSEK, QSopt, SoPlex, Xpress
I over 1 600 parameters and 15 emphasis settings
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(Some) Universities and Institutes using SCIP

about 8000 downloads per year
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SCIP plus Jack

SCIP-Jack

JackSCIP

Development of SCIP-Jack has been joint work with:
Gerald Gamrath · Thorsten Koch · Stephen J. Maher · Yuji Shinano
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A Steiner class solver
SCIP-Jack can solve SPG and 12 related problems:

Abbreviation Problem Name

SPG Steiner tree problem in graphs
SAP Steiner arborescence problem
RSMT Rectilinear Steiner minimum tree problem
OARSMT Obstacle-avoiding rectilinear Steiner minimum tree problem
NWSTP Node-weighted Steiner tree problem
NWPTSTP Node-weighted partial terminal Steiner tree problem
PCSTP Prize-collecting Steiner tree problem
RPCSTP Rooted prize-collecting Steiner tree problem
MWCSP Maximum-weight connected subgraph problem
RMWCSP Rooted maximum-weight connected subgraph problem
DCSTP Degree-constrained Steiner tree problem
GSTP Group Steiner tree problem
HCDSTP Hop-constrained directed Steiner tree problem
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SCIP-Jack

SCIP-Jack works by combining generic and problem specific
algorithms:

. generic

I extremely fast separator routine based on new max-flow
implementation

I all general methods provided by SCIP
e.g., generic cutting planes

. problem specific

I efficient transformations to Steiner arborescence problem
(needed for applying generic separator)

I preprocessing and propagation routines
I primal and dual heuristics
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SCIP-Jack

SCIP-Jack Pre
processing
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Performance of SCIP-Jack for SPG

SCIP-Jack is
. usually between two and three orders of magnitude faster than

Jack-III (both using CPLEX 12.7.1 as LP-solver)
. fastest publicly available solver for SPG
. also fastest solver for several related problems...
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PACE 2018  https://pacechallenge.wordpress.com/pace-2018

The Parameterized Algorithms and Computational Experiments Challenge
fixed-parameter tractable instances; more than 100 participants
Setting: 3 tracks, 100 instances in each track, time limit 30 min.
▷ Track A: exact, few terminals; results on public instances:

▶ Winner: 94/100 Iwata, Shigemura (NII, Japan)
▶ SCIP-Jack/SoPlex: 93/100 3rd place
▶ SCIP-Jack/CPLEX:    100/100

▷ Track B: exact, low treewidth; results on public instances:
▶ SCIP-Jack/SoPlex: 98/100 1st place
▶ SCIP-Jack/CPLEX: 99/100
▶ best other: 84/100

▷ Track C: heuristic, mean ratio to best known upper bound:
▶ Winner: 99.92   Ruiz, Cuevas, López, González (CIMAT, Mexico)
▶ SCIP-Jack/SoPlex: 99.81 2nd place
▶ SCIP-Jack/CPLEX: 100

A mostly discrete tour through optimization                                        Thorsten Koch 85Thorsten Koch · Daniel Rehfeldt 15 / 46



Relatives

Prize-collecting Steiner tree problem
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Prize-Collecting Steiner Trees

Given:
. undirected graph G = (V , E )
. vertex costs p ∈ RV

>0

. edge costs c ∈ RE
>0

Prize-Collecting Steiner Tree Problem (PCSTP)
Find a tree S ⊆ G such that
.

∑
e∈E(S) c(e) + ∑

v∈V\V (S) p(v) is minimized

Tp := {v ∈ V | p(v) > 0} are called potential terminals.
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Transformation: PCSPG to SAP

p=2.5p=7

1.10.6

1.5

r ′

M M

00

00

7 2.5

1.10.6

1.5
Transformation to SAP ...
. allows to use powerful cut-separation routine of SCIP-Jack
. allows to employ strong heuristics based on a dual-ascent algorithm

for SAP

works, but not enough to be competitive...
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Reduction techniques

Some recent work ...

Definition
Let vi , vj ∈ V . Call walk W = (vi1 , ei1 , vi2 , ei2 , ..., eir , vir ) with vi1 = vi
and vir = vj prize-constrained (vi , vj)-walk if no v ∈ Tp ∪ {vi , vj}
contained more than once in W .

Definition
Define prize-collecting cost of W as

cpc(W ) :=
∑

e∈E(W )
c(e)−

∑
v∈V (W )\{vi ,vj}

p(v).
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Reduction techniques (2)

Definition
Define prize-constrained length of W :

lpc(W ) := max{cpc(W (vik , vil )) | 1 6 k 6 l 6 r , vik , vil ∈ Tp∪{vi , vj}}.

Let Wpc(vi , vj) prize-constrained (vi , vj)-walks define prize-constrained
distance between vi and vj :

dpc(vi , vj) := min{lpc(W ′) | W ′ ∈ Wpc(vi , vj)}.
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Reduction techniques (3)

Proposition
Let {vi , vj} ∈ E . If

c({vi , vj}) > dpc(vi , vj)

is satisfied, then {vi , vj} cannot be contained in any optimal solution.

Prize-constrained concept allows for very powerful reduction tests;
dominates previous concept from Uchoa 2006 (Oper. Res. Let.) and
generalizes tests known for SPG.

Downside: NP-hard. But: Nice (easy to implement) approximation by
an extension of Dijkstra’s algorithm.
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Prize-constrained walks (2)
Another use of prize-constrained walks:

Definition
Let W be prize-constrained (vi , vj) walk. Define left-rooted
prize-constrained length of W as:

l−pc(W ) := max{cpc(W (vi , vik )) | vik ∈ V (W ) ∩ (Tp ∪ {vj})}.

Definition
Define left-rooted prize-constrained (vi , vj)-distance as:

d−pc(vi , vj) := min{l−pc(W ′) | W ′ ∈ Wpc(vi , vj)}.
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Left-rooted prize-constrained walks

Proposition
Let vi , vj ∈ V . If

p(vi) > d−pc(vi , vj),

then every optimal solution that contains vj also contains vi .
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Using left-rooted prize-constrained walks

p=2.5p=7

1.10.6

1.5

r ′

M M

00

00

7 2.5

1.10.6

1.5

. Use prize-constrained walks to identify terminals ti that need to be
part of all optimal solutions

. ...allows for better transformation to SAP:
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INPUT: RPCSTP (V ,E ,Tf , c, p) and tp , tq ∈ Tf Tf := {t1, t2, ..., tz} fixed terminals
OUTPUT: SAP

1. Set V ′ := V , A′ := {(v ,w) ∈ V ′ × V ′ | {v ,w} ∈ E}, c′ := c, r ′ := tq .

2. For each i ∈ {1, ..., z}:
2.1 add node t′i to V ′,
2.2 add arc (ti , t′i ) of weight 0 to A′,
2.3 add arc (tp , t′i ) of weight p(ti ) to A′.

3. Define set of terminals T ′ := {t′1, ..., t′z} ∪ Tf .
4. Return (V ′,A′,T ′, c′, r ′).

p=2.5p=7

1.10.6

1.5

r ′ 02.5

1.10.6

1.5

We have recently proved: Choice of tp , tq does not change LP value! But: Can have strong
impact in practival solving, natural candidate for UG racing ramp up parameter!
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Prize-constrained walks in branch-and-cut

. preprocessing

. probing

. propagation

. cutting planes

. primal heuristics

. dual heuristics

. B&B
We can exploit that when using UG!
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Performance of SCIP-Jack on PCSTP
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Performance of SCIP-Jack on PCSTP

Many PCSTP solvers introduced in the literature lately, the two best:
. Fischetti et. al. 2017 (Math. Prog. C)
. Leitner et. al. 2018 (INFORMS J. Comput.) ... stronger by far
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mean time [s] max. time [s] # solved

Test set # L18 SJ L18 SJ L18 SJ

JMP 34 0.0 0.0 0.0 0.0 34 34
Cologne1 14 0.0 0.0 0.1 0.0 14 14
Cologne2 15 0.1 0.1 0.2 0.1 15 15
CRR 80 0.1 0.1 5.7 1.1 80 80
ACTMOD 8 0.9 0.3 3.5 1.5 8 8
E 40 1.8 0.2 >3600 34.5 37 40
HANDBI 14 36.5 14.9 >3600 >3600 12 13
HANDBD 14 34.1 13.3 >3600 >3600 13 13
I640 100 8.7 6.1 >3600 >3600 90 91
PUCNU 18 278.9 80.2 >3600 >3600 7 11
H 14 488.7 477.4 >3600 >3600 4 5

SJ - SCIP-Jack
L18 - Leitner et. al. 2018
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Performance of SCIP-Jack on PCSTP (2)

. SCIP-Jack often more than two or three orders of magnitude faster
than next best solver (from Fischetti et. al. 2017, Math. Prog. C).
E.g. max. time on Cologne2:
I Fischetti et. al.: > 200 seconds
I SCIP-Jack: < 0.1 seconds

. Recent PCSTP improvements of SCIP-Jack allowed us to solve two
and improve best known solutions for more than one third of
unsolved DIMACS 2014 instances.
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Parallelization of SCIP-Jack by UG

. UG framework to parallelize B&B search both in shared,
ug[SCIP-Jack, C++11 threads], and distributed, ug[SCIP-Jack,
MPI], environments.

. Parallelization can be realized with a few lines of code.

. ... but to improve performance both UG and SCIP-Jack had to be
extended.

. Difficulties:
I Long running time in root node.
I Special branching.
I Distributing problem specific preprocessing effects.

Thorsten Koch · Daniel Rehfeldt 31 / 46



Branching on vertices

SCIP-Jack branches on vertices of the graph.
Including vertex v corresponds to the constraint:∑

a∈δ−(v)
xa = 1

Excluding vertex v corresponds to constraint:∑
a∈δ−(v)∪δ+(v)

xa = 0

. added new features to UG to allow branching on constraints

. ...but (in particular for PCSTP) we need to adapt underlying graph!
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Building new subproblems

. SCIP-Jack/UG transfers branching history together with
subproblem. SCIP-Jack changes underlying graph (e.g. deletes
vertices).

. Improves finding locally valid solutions and helps cut generation.
Local cuts also transferred by UG.

. Using branching history for separation and heuristics, we got
speed-up of about 30% with 32 threads.

Thorsten Koch · Daniel Rehfeldt 33 / 46



Aggressive presolving of subproblems

Strong point of UG: presolving of subproblems during
branch-and-bound.
Problem:
. For Steiner tree problems MIP presolving remarkably unsuccessful.
. Complex Steiner reduction techniques not easy to reflect in IP.

Thus Steiner tree solvers only perform reductions to delete vertices
and edges during B&B.

We make use of following observation:

Thorsten Koch · Daniel Rehfeldt 34 / 46



Aggressive presolving of subproblems(2)

Each SCIP-Jack Steiner tree reduction transforms SPG (V , E , T , c)
to SPG (V ′, E ′, T ′, c ′) and provides function p : E ′ → P (E ) such
that for each (optimal) solution S ′ ⊆ E ′ to transformed problem, set⋃

e∈S′ p(e) is (optimal) solution to original problem.

Observation
Let (V , E , T , c), (V ′, E ′, T ′, c ′), and p as above. Define
E ′′ := ⋃

e∈E ′ p(e),
V ′′ := {v ∈ V | ∃(v , w) ∈ E ′′, w ∈ V },
T ′′ := {t ∈ T | ∃(t, w) ∈ E ′′, w ∈ V },
c ′′ := c|E ′′ .
Each (optimal) solution to (V ′′, E ′′, T ′′, c ′′) is (optimal) solution to
(V , E , T , c).
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Aggressive presolving of subproblems(3)

Observation allows us to perform aggressive presolving whenever new
subproblems are initialized. About 25% speed-up with 32 threads and
improved scaling behaviour.
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Customized racing ramp-up

Racing ramp-up with customized racing paramaters (new feature of
UG) is also used.
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Shared memory results for PCSTP

Threads i640-115 i640-141 cc10-2nu cc7nu

1 201 809 812 4,333
8 102 314 311 1,922

16 80 210 200 1,023
32 78 110 167 843
64 79 101 165 723

root time 15 28 107 55
max # solvers 13 48 34 64

first max active time 55 152 211 301
All times in seconds
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Results for SPG

We performed experiments on PUC, the most difficult Steiner tree
test set: 29 of 50 instances have remained unsolved.

SCIP-Jack (sequential) is currently the strongest solver on PUC:
. # instances solved in one hour:

I 13 by SCIP-Jack:
I 12 by best other (Polzin, Vahdati Daneshmand, 2014)1

. # instances solved in 12 hours:
I 18 by SCIP-Jack:
I 13 by best other (Polzin, Vahdati Daneshmand, 2014)

2Run time is scaled, as solver is not publicly available
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Distributed memory results

Two years ago on the PUC test set ug[SCIP-Jack, MPI]:
. improved primal bounds for 14 instances
. solved three instances to optimality for first time

In recent computational experiments we were able to
. improve two best known primal bounds
. solve one previously unsolved instance
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Solving hc9p

Supercomputers used:
. ISM: HPE SGI 8600 with 384 compute nodes, each node has two

Intel Xeon Gold 6154 3.0GHz CPUs(18 cores×2) sharing 384GB of
memory, and Infiniband (Enhanced Hypercube) interconnect

. HLRN III: Cray XC40 with 1872 compute nodes, each node with
two 12-core Intel Xeon Ivy- Bridge/Haswell CPUs sharing 64 GiB
of RAM, and with Aries interconnect
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How open nodes and active solvers evolved (hc9p)
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Solving hc11p

Supercomputers used:
. ISM: HPE SGI 8600 with 384 compute nodes, each node has two

Intel Xeon Gold 6154 3.0GHz CPUs(18 cores×2) sharing 384GB of
memory, and Infiniband (Enhanced Hypercube) interconnect

. HLRN III: Cray XC40 with 1872 compute nodes, each node with
two 12-core Intel Xeon Ivy- Bridge/Haswell CPUs sharing 64 GiB
of RAM, and with Aries interconnect
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How open nodes and active solvers evolved (hc11p)

Thorsten Koch · Daniel Rehfeldt 44 / 46



(Parallel) Outlook

We plan to
. (considerably) improve sequential performance of both SPG and

related problems
. add internal shared memory parallelizations to SCIP-Jack
And:
. solve more open PUC instances with ug[SCIP-Jack, MPI]
. solve open instances of related problems with ug[SCIP-Jack, MPI]

Thank you!
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