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The paper (and talk) in one slide

e Progressive hedging (PH) is an iterative, scenario decomposition
method for solving multi-stage stochastic programs (Rockefellar
and Wets).

o PH alone is not guaranteed to convergenge for stochastic MIPs.

e We motivate and describe a provably convergent branch and
bound algorithm that uses PH within each (outer) node.

e Computational experiments show that for some difficult problem
instances BBPH can find improved solutions within a few branches
(but that’s not really the main thing).
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A few B&B algorithms

@ Shabbir Ahmed. A scenario decomposition algorithm for 0-1
stochastic programs.
Technical report, ISYE, Georgia Tech, 2013

o Claus C Carge and Riidiger Schultz. Dual decomposition in
stochastic integer programming.
Operations Research Letters, 24(1):37-45, 1999

o Laureano F. Escudero, Araceli Garin, Maria Merino, and Gloria

Pérez. Bfc-msmip: an exact branch-and-fix coordination approach
for solving multistage stochastic mixed 0-1 problems.
TOP, 17(1):96-122, 2009
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Our Paper

J Barnett, JP Watson, DL. Woodruff Operations Research Letters 45
(1), 2017, 34-39
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Bounds

e Lower bound with roughly the same effort as a PH iteration
D. Gade, G. Hackebeil, S.M. Ryan, J.P. Watson, R.J.B. Wets, and
D.L. Woodruff. Obtaining lower bounds from the progressive
hedging algorithm for stochastic mixed-integer programs.
Mathetmatical Programming Series B, 157:47-67, 2016

e (not an integer relaxation)

e Upper bound, e.g., by computing the expected value of a scenario
solution

o “Side effect:”
Ge Guo, Gabriel Hackebeil, Sarah M Ryan, Jean-Paul Watson,

and David L. Woodruff. Integration of progressive hedging and
dual decomposition in stochastic integer programs.
Operations Research Letters, 43(3):311-316, 2015
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Motivation

e “Unsolvable by PH” examples in the paper

@ Theorem in the paper
e But mainly it puts you in the midst of an exact algorithm when

you use PH
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Sketch of PHBB

Let u be the non-leaf decisions and y the leaf-node decisions.

o

2]
o

Initialize: Set Z = co and z; = —oo. Set £ «+ {(SMIP)}.

Choose node: Select a node N* € L. If £ = (), goto Step 5.
Calculate bounds: Remove N* from £. Run PH on the selected
outer B&B node N*. After each iteration of PH,

©® Obtain & = (u,7y), calculate the corresponding objective value m;
set z + min{m, z}. Remove nodes N* € LUN with z;, > 2.
® Compute bound D(w,). If Z— D(w,) < €, terminate PH and return
to step 2.
Branch: Select a non-fixed variable u'(i), and create subnodes
N and N corresponding to the branches u!(i) < @'(i) and
ul (i) > u'(i) respectively. If u!(i) are fixed Vi, continue with u?(i)
(and so on). If N°© and N are fully real-valued problems, add
them to A, else add them to £. Return to step 2.
Choose terminal node: Select a node N € N and continue to
Step 6. If N = (), terminate BBPH with the following: if z = oo,
the problem is infeasible, otherwise our solution is & with objective
value Zz. ’ '
Solve terminal node: Remove N from A. Run PH on N* wigh,



Three Potential Levels of Parallelism

@ “Outer” BBPH nodes
@ PH by scenario
@ BB nodes within the scenario MIP solves
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Conclusions

e An implementation of PH and some test instances are available at
pyomo.org

o BBPH was released with the paper.
e BBPH puts PH in an exact algorithm.
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pyomo.org

Mulistage Stochastic Formulation

(for people who already know most of the notation)

m1nf1 —HEift( Loyt 1,{ ) (1)

t=2
subject to z(§) € Ye, £ € E, (2)
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Multi-stage formulation with a tree
Followed by Sketch of PH Algorithm

Let G; be the set of all scenario tree nodes for stage t and let G,(§) be
the node at time ¢ for a particular scenario, £&. For a particular node D
let D! be the set of scenarios that define the node.

In the presence of a scenario tree, non-anticipativity must be enforced
at each non-leaf node, so using the discrete scenario tree notation,
problem (1) becomes

min E e
x,T

T ogeE

T
AEHE) + Y fi (ﬁ(sw-l,ét)] 3)

t=2
st.x(§) €Y, (€E (4)
2§ —#(D)=0, t=1,....,T—1,DeG, (€D (5)
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Q Initialization: Let v <+ 0 and w,(G,(§)) «+ 0, VE € =, t=1,...,T.
Compute for each £ € = :

z,41(6) € argmin Y e lﬁ(wl(o) + 3 f(atenE Y

zeX (&) ce= =2

@ Iteration Update: v < v+ 1.
© Aggregation: Foreacht=1,...,7 —1 and each D € G, :

(D) | D meal(Gu(©) ]| /| D me

éeD-1 éep-1
© Weight Update: Foreacht=1,...,7 — 1 and each ¢ € =:
wy (Gi(€)) = wy—1(Ge(€)) + pl21,(G(€)) — 2,(G"(€))]-

@ Decomposition: For each £ € E: assign z,41(§) € arg ming ¢ x ¢

T T-1
AGEE)+Dfi (21771 E) + 3 [wh(©).ah) + Ellat — 22

@ Termination criterion: If the solutions at the tree nodes are equal (up
to a given tolerance €) or the maximum iteration count is reached, stcl)P/.13
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Test results for network flow minimization problems; times are wall-clock

seconds.
EF PH BBPH PH Bundles
Instance | Objective | Time Obj. | Time Obj. | Time Obj.
1ef50 158653 | 2579 166848 | 18161 162163 | 31891 162946
2ef50 151060 | 1172 156211 | 15330 156211 | 9486 154065
3ef50 161466 | 2843 167871 | 33390 165733 | 30228 166174
4ef50 153854 | 2296 157229 | 18150 157229 | 8349 157697
5ef50 150401 | 1190 155002 | 8556 152686 | 7841 156109
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Test results for three stage network flow with a branching factor of ten for the
second stage and three for the third; times are wall-clock seconds.

EF PH BBPH
Instance | Time Objective | Time Objective | Time Objective \
lefl10 10,046 160,964 | 1,934 166,189 | 18,606 163,647
2ef10 10,045 156,637 | 2,065 160,849 | 13,767 160,052
3ef10 3,424 157,025 | 1,748 166,406 | 13,581 160,032
4ef10 2,327 170,067 | 1,428 191,796 | 13,786 176,127
5ef10 4,295 161,840 | 2,432 169,287 | 14,911 168,542
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