Parallel PIPS-SBB
Multi-level parallelism for 2-stage SMIPS

Lluís-Miquel Munguia, Geoffrey M. Oxberry, Deepak Rajan, Yuji Shinano
Our contribution

PIPS-PSBB*: Multi-level parallelism for Stochastic Mixed-Integer programs

• Fully-featured MIP solver for any generic 2-stage Stochastic MIP.
• Two levels of nested parallelism (B & B and LP relaxations).
• Integral parallelization of every component of Branch & Bound.
• Handle large problems: parallel problem data distribution.
• Distributed-memory parallelization.
• Novel fine-grained load-balancing strategies.
• Actually two(2) parallel solvers:
 • PIPS-PSBB
 • ug[PIPS-SBB,MPI]

*PIPS-PSBB: Parallel Interior Point Solver – Parallel Simple Branch and Bound
MIPs are NP-Hard problems: Theoretically and computationally intractable.

LP-based Branch & Bound allows us to systematically search the solution space by subdividing the problem.

Upper Bounds (UB) are provided by the integer solutions found along the Branch & Bound exploration. Lower Bounds (LB) are provided by the optimal values of the LP relaxations.
Coarse-grained Parallel Branch and Bound

- Branch and bound is straightforward to parallelize: the processing of subproblems is independent.

- Standard parallelization present in most state-of-the-art MIP solvers.

- Processing of a node becomes the sequential computation bottleneck.

- Coarse grained parallelizations are a popular option: Potential performance pitfalls due to a master-slave approach, and relaxations are hard to parallelize.
Coarse-grained Parallel Branch and Bound

- Branch and Bound exploration is coordinated by a special process or thread.
- Worker threads solve open subproblems using a base MIP solver.

- Centralized communication poses serious challenges: performance bottlenecks and a reduction in parallel efficiency:
 - Communication stress at ramp-up and ramp-down.
 - Limited rebalancing capability: suboptimal distribution of work.
 - Diffusion of information is slow.
Currently available coarse-grained parallelizations

- Coarse-grained parallelizations may scale poorly.
- Extra work is performed when compared to the sequential case.
- Information required to fathom nodes is discovered through the optimization.

- Powerful heuristics are necessary to find good feasible solutions early in the search.
Branch and Bound as a graph problem

- We can regard parallel Branch and Bound as a parallel graph exploration problem.
- Given P processors, we define the frontier of a tree as the set of P subproblems currently being open. The subset currently processed in parallel are the active nodes.
- We additionally define a redundant node as a subproblem, which is fathomable if the optimal solution is known.
- The goal is to increase the efficiency of Parallel Branch and Bound by reducing the number of redundant nodes explored.
Our approach to Parallel Branch and Bound

• In order to reduce the amount of redundant nodes explored, the search must fathom subproblems by having high quality primal incumbents and focus on the most promising nodes.

• To increase the parallel efficiency by:
 – Generating a set of active nodes comprised of the most promising nodes.
 – Employing processors to explore the smallest amount of active nodes.

• Two degrees of parallelism:
 – Processing of nodes in parallel (parallel LP relaxation, parallel heuristics, parallel problem branching, …).
 – Branch and Bound in parallel.
The smallest transferrable unit of work is a Branch and Bound node.

Because of the exchange of nodes, queues in processors become a collection of subtrees.

This allows for great flexibility and a fine-grained control of the parallel effort.

Coordination of the parallel optimization is decentralized with the objective of maximizing load balance.
All-to-all parallel node exchange

- Load balancing is maintained via synchronous MPI collective communications.
- The lower bound of the most promising K nodes of every processor are exchanged and ranked.
- The top K out of $K \cdot N$ nodes are selected and redistributed in a round robin fashion.
- Because of the synchronous nature of the approach, communication must be used strategically in order to avoid parallel overheads.
- Node transfers are synchronous, while the statuses of each solver (Upper/lower bounds, tree sizes, times, solutions, …) are exchanged asynchronously.
Stochastic programming models optimization problems involving uncertainty.

We consider two-stage stochastic mixed-integer programs (SMIPs) with recourse:

- 1st stage: deterministic “now” decisions
- 2nd stage: depends on random event & first stage decisions.

\[
\min_x \{ c^t x + \mathbb{E}_\rho[Q(x, \omega)] | Ax \leq b, x_j \in \mathbb{Z}, \forall j \in I_1 \}
\]

\[
Q(x, \omega) = \min_y \{ q^t y | Wy \leq h - Tx, y_j \in \mathbb{Z}, \forall j \in I_2 \}
\]

Cost function includes deterministic variables & expected value function of non-deterministic parameters.
Stochastic MIPs and their deterministic equivalent

- We consider deterministic equivalent formulations of 2-stage SMIPs under the sample average approximation.
- This assumption yields characteristic dual block-angular structure.

\[
\min_x \{ c^T x + \mathbb{E}_p[Q(x, \omega)] | Ax \leq b, x_j \in \mathbb{Z}, \forall j \in I_1 \}
\]

\[Q(x, \omega) = \min_y \{ q^T y | Wy \leq h - Tx, y_j \in \mathbb{Z}, \forall j \in I_2 \}\]

\[
\begin{bmatrix}
A \\
T_1 \\
W_1 \\
T_2 \\
W_2 \\
\vdots \\
T_N \\
W_N
\end{bmatrix}
\begin{bmatrix}
x_0 \\
x_1 \\
x_2 \\
\vdots \\
x_N
\end{bmatrix}
\leq
\begin{bmatrix}
b_0 \\
b_1 \\
b_2 \\
\vdots \\
b_N
\end{bmatrix}
\]

\{ Common constraints \}

\{ Independent realization scenarios \}
PIPS-PSBB: Design philosophy and features

- PIPS-PSBB is a specialized solver for two-stage Stochastic Mixed Integer Programs that uses Branch and Bound to achieve finite convergence to optimality.

- It addresses each of the issues associated to Stochastic MIPs:
 - A Distributed Memory approach allows to partition the second stage scenario data among multiple computing nodes.
PIPS-SBB: Design philosophy and features

- PIPS-SBB is a specialized solver for two-stage Stochastic Mixed Integer Programs that uses Branch and Bound to achieve finite convergence to optimality.

- It addresses each of the issues associated to Stochastic MIPs:
 - A Distributed Memory approach allows to partition the second stage scenario data among multiple computing nodes.
 - As the backbone LP solver, we use PIPS-S: a Distributed Memory parallel Simplex solver for Stochastic Linear Programs.
PIPS-SBB: Design philosophy and features

- PIPS-SBB is a specialized solver for two-stage Stochastic Mixed Integer Programs that uses Branch and Bound to achieve finite convergence to optimality.

- It addresses each of the issues associated to Stochastic MIPs:
 - A Distributed Memory approach allows to partition the second stage scenario data among multiple computing nodes.
 - As the backbone LP solver, we use PIPS-S: a Distributed Memory parallel Simplex solver for Stochastic Linear Programs.
 - PIPS-PSBB has a structured software architecture that is easy to expand in terms of functionality and features.
Our approach to Parallel Branch and Bound

- Two levels of parallelism require a layered organization of the MPI processors.

- In the Branch and bound communicator, processors exchange:
 - Branch and Bound Nodes.
 - Solutions.
 - Lower Bound Information.
 - Queue sizes and search status.

- In the PIPS-S communicator, processors perform in parallel:
 - LP relaxations.
 - Primal Heuristics.
 - Branching and candidate selection.

- Strategies for ramp-up:
 - Parallel Strong Branching
 - Standard Branch and Bound

- Strategy for Ramp-down: intensify the frequency of node rebalancing.
In addition to PIPS-PSBB, we also introduce ug[PIPS-SBB,MPI]: a coarse grained external parallelization of PIPS-SBB.

UG is a generic framework used to parallelize Branch & Bound based MIP solvers.
- Exploits powerful performance of state-of-the-art base solvers, such as SCIP, Xpress, Gurobi, and CPLEX.
- It uses the base solver as a black box.

UG has been widely applied to parallelize many MIP solvers:
- Distributed memory via MPI: ug[SCIP,MPI], ug[Xpress,MPI], ug[CPLEX,MPI]
- Shared-memory via Pthreads: ug[SCIP,Pth], ug[Xpress, Pth]
UG has been successfully used to solve some open MIP problems using more than 80,000 cores. Certainly proven to be scalable.

ug[PIPS-SBB,MPI] co-developed with Yuji Shinano

The second MIP solver in the world (after PIPS-PSBB) to use two levels of nested parallelism.
We test our solver on SSLP instances, from the SIPLIB library.

SSLP instances model server locations under uncertainty.

Instances are coded as SSLPm_n_s, where s represents the number of scenarios.

Larger number of scenarios means bigger problems

- LP relaxations of all instances fit in memory, even in CPLEX
- PIPS-SBB can handle much larger LP relaxations

Details: see http://www2.isye.gatech.edu/~sahmed/siplib/sslp/sslp.html

PIPSBB run on the Cab cluster:

- Each node: Intel Xeon E5-2670, 2.6 GHz, 2 CPUs x 8 cores/CPU
- 16 cores/node
- 2 GB RAM/core, 32 GB RAM/node
- Infiniband QDR interconnect

CPLEX 12.6.2 used in some comparisons, in Vanilla setting.
Experimental performance results

- We measure parallel performance in terms of speedup, node inefficiency, and communication overhead:
 - Speedup S_p on the time T_p needed to reach optimality by a configuration with p processors with respect to the time needed by a sequential baseline T_1:
 $$S_p = \frac{T_1}{T_p}$$
 - Communication overhead: Fraction of time $T_{\text{comm}} + T_{\text{sync}}$ needed for communication and processor synchronization with respect to the total time of execution T_{exec}:
 $$C_{ov} = \frac{T_{\text{comm}} + T_{\text{sync}}}{T_{\text{exec}}}$$
 - Node inefficiency: Fraction of redundant nodes explored N_r with respect to the total number of nodes explored N_{total}.
 $$N_{\text{ineff}} = \frac{N_r}{N_{\text{total}}}$$
PIPS-PSBB and ug[PIPS-SBB,MPI]: Performance comparison

Performance comparison between PIPS-PSBB and ug[PIPS-SBB,MPI] when optimizing small instances. sslp_15_45_5 (5 scenarios, 3390 binary variables, 301 constraints)

PIPS-PSBB:
- Scales up to 200 cores (66x).
- Total work performed remains within a factor of 2x w.r.t. sequential.
- Communication overhead dominates after 400 cores.
- Node inefficiency grows at a slower rate than ug[PIPS-SBB,MPI].

ug[PIPS-SBB,MPI]:
- Scales up to 200 cores (33x).
- Total work varies by processor configuration.
- Higher communication overhead and higher node inefficiency.
Tuning the communication frequency of PIPS-PSBB

- PIPS-PSBB allows to modify the frequency between synchronous communications.

- Frequency defined with \((x,y)\), where \(x\) and \(y\) represent the minimum and maximum number of B&B iterations that must be processed before communication takes place.

- Tighter communication increases communication overheads, but reduces work performed.

- The opposite takes place under loose communication.
PIPS-PSBB Solver performance exposed: sslp_10_50_500
(500 scenarios, 250,010 binary variables, 30,001 constraints)

PIPS-S:
- Speedup to 10 cores is 6x.
- Performance increases up to 20 cores.

PIPS-PSBB:
- Communication overhead minimal except at rampup when LP solver is slow.
PIPS-SBB: Comparison against CPLEX

Performance comparison against CPLEX 12.6.2

<table>
<thead>
<tr>
<th>Instance</th>
<th>Scenarios</th>
<th>Configuration</th>
<th>PIPS-PSBB</th>
<th>ug[PIPS-SBB,UG]</th>
<th>CPLEX SM</th>
<th>CPLEX SM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Solvers</td>
<td>PIPS-S solvers</td>
<td>GAP(%)</td>
<td>GAP(%)</td>
</tr>
<tr>
<td>sslp_5_25_50</td>
<td>50</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>(7.45s)</td>
<td>(8.03s)</td>
</tr>
<tr>
<td>sslp_5_25_100</td>
<td>100</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>(22.37s)</td>
<td>(17.79s)</td>
</tr>
<tr>
<td>sslp_15_45_5</td>
<td>5</td>
<td>200</td>
<td>2</td>
<td>2</td>
<td>(107.11s)</td>
<td>163.53s</td>
</tr>
<tr>
<td>sslp_15_45_10</td>
<td>10</td>
<td>200</td>
<td>2</td>
<td>0.09%</td>
<td>0.16%</td>
<td>16</td>
</tr>
<tr>
<td>sslp_15_45_15</td>
<td>15</td>
<td>200</td>
<td>2</td>
<td>0.25%</td>
<td>0.30%</td>
<td>16</td>
</tr>
<tr>
<td>sslp_10_50_50</td>
<td>50</td>
<td>200</td>
<td>10</td>
<td>0.13%</td>
<td>0.21%</td>
<td>16</td>
</tr>
<tr>
<td>sslp_10_50_100</td>
<td>100</td>
<td>200</td>
<td>10</td>
<td>0.17%</td>
<td>0.20%</td>
<td>16</td>
</tr>
<tr>
<td>sslp_10_50_500</td>
<td>500</td>
<td>200</td>
<td>10</td>
<td>0.24%</td>
<td>0.24%</td>
<td>16</td>
</tr>
<tr>
<td>sslp_10_50_1000</td>
<td>1000</td>
<td>200</td>
<td>10</td>
<td>0.24%</td>
<td>0.24%</td>
<td>16</td>
</tr>
<tr>
<td>sslp_10_50_2000</td>
<td>2000</td>
<td>200</td>
<td>10</td>
<td>0.26%</td>
<td>0.26%</td>
<td>16</td>
</tr>
</tbody>
</table>

Time limit: 1 hour

- Distributed-memory parallelization of CPLEX is often inferior to its shared-memory counterpart.
- Both CPLEX versions run into Memory limits for some problems.

- The superior performance of CPLEX’s base solver helps in trivial and small problems.
- PIPS-SBB-based solvers show superior performance for large problems.
Conclusions

- We developed a light-weight decentralized distributed memory branch-and-bound implementation for PIPS-SBB with two degrees of parallelism:
 - Processing of nodes in parallel (parallel LP relaxation, parallel heuristics, parallel problem branching, …).
 - Branch and Bound in parallel.

- Better parallel efficiency is achieved by focusing the parallel resources in the most promising nodes.

- We try to reduce communication bottlenecks and achieve high processor occupancy via a decentralized control of the tree exploration and a lightweight mechanism for exchanging Branch and Bound nodes.

- Competitive performance to state-of-the-art commercial MIP solvers, in the context of large instances.
A natural progression in the parallelization of Branch & Bound

The presented work contributes to the ultimate goal of improving the **parallel efficiency** of Branch & Bound.

- New parallel heuristics, which leverage parallelism in order to increase the effectiveness, speed and scalability of primal heuristics.

- New parallel algorithms for a better distribution of work in the context of Branch & Bound.

The code of PIPS-PSBB is available at: https://github.com/LLNL/PIPS-SBB
Thank You!