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Our contribution
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PIPS-PSBB*: Multi-level parallelism for Stochastic Mixed-Integer programs

• Fully-featured MIP solver for any generic 2-stage Stochastic MIP.

• Two levels of nested parallelism (B & B and LP relaxations).

• Integral parallelization of every component of Branch & Bound.

• Handle large problems: parallel problem data distribution.

• Distributed-memory parallelization.

• Novel fine-grained load-balancing strategies.

• Actually two(2) parallel solvers:
• PIPS-PSBB
• ug[PIPS-SBB,MPI]

*PIPS-PSBB: Parallel Interior Point Solver – Parallel Simple Branch and Bound
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• MIPs are NP-Hard problems: Theoretically and computationally intractable.
• LP-based Branch & Bound allows us to systematically search the solution space by 

subdividing the problem.
• Upper Bounds (UB) are provided by the integer solutions found along the Branch & 

Bound exploration. Lower Bounds (LB) are provided by the optimal values of the LP 
relaxations.
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Introduction



Coarse-grained Parallel Branch and Bound

• Branch and bound is straightforward to parallelize: the processing of subproblems is 
independent. 

• Standard parallelization present in most state-of-the-art MIP solvers.

• Processing of a node becomes the sequential computation bottleneck.

• Coarse grained parallelizations are a popular option: Potential performance pitfalls 
due to a master-slave approach, and relaxations are hard to parallelize.



Coarse-grained Parallel Branch and Bound

• Centralized communication poses 
serious challenges: performance 
bottlenecks and a reduction in 
parallel efficiency:

– Communication stress at ramp-
up and ramp-down.

– Limited rebalancing capability: 
suboptimal distribution of work.

– Diffusion of information is slow.

• Branch and Bound exploration is coordinated by a special process or thread.

• Worker threads solve open subproblems using a base MIP solver.



• Coarse-grained parallelizations may scale poorly.
• Extra work is performed when compared to the sequential case.
• Information required to fathom nodes is discovered through the optimization.

• Powerful heuristics are necessary to find good feasible solutions early in the 
search.

Currently available coarse-grained parallelizations
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Branch and Bound as a graph problem

• We can regard parallel Branch and Bound as a parallel graph exploration problem

• Given P processors, we define the frontier of a tree as the set of P subproblems
currently being open. The subset currently processed in parallel are the active nodes.

• We additionally define a redundant node as a subproblem, which is fathomable if the 
optimal solution is known.

• The goal is to increase the efficiency of Parallel Branch and Bound by reducing the 
number of redundant nodes explored.



Our approach to Parallel Branch and Bound

• In order to reduce the amount of redundant nodes explored, the search must fathom 
subproblems by having high quality primal incumbents and focus on the most 
promising nodes.

• To increase the parallel efficiency by:

– Generating a set of active nodes comprised of the most promising nodes.

– Employing processors to explore the smallest amount of active nodes.

• Two degrees of parallelism:

– Processing of nodes in parallel (parallel LP relaxation, parallel heuristics, parallel 
problem branching, …).

– Branch and Bound in parallel.

� ...



Fine-grained Parallel Branch and Bound

• The smallest transferrable unit of work is a Branch and Bound node.

• Because of the exchange of nodes, queues in processors become a collection of 
subtrees.

• This allows for great flexibility and a fine-grained control of the parallel effort.

• Coordination of the parallel optimization is decentralized with the objective of 
maximizing load balance.



All-to-all parallel node exchange

• Load balancing is maintained via 
synchronous MPI collective 
communications.

• The lower bound of the most promising K 
nodes of every processor are exchanged 
and ranked.

• The top K out of K ·N nodes are selected 
and redistributed in a round robin fashion.

• Because of the synchronous nature of the 
approach, communication must be used 
strategically in order to avoid parallel 
overheads.

• Node transfers are synchronous, while the 
statuses of each solver (Upper/lower 
bounds, tree sizes, times, solutions, …) 
are exchanged asynchronously.
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• Stochastic programming models optimization problems involving 
uncertainty.

• We consider two-stage stochastic mixed-integer programs (SMIPs) with 
recourse:

– 1st stage: deterministic “now” decisions

– 2nd stage: depends on random event & first stage decisions.

• Cost function includes deterministic variables & expected value function of 
non-deterministic parameters

Stochastic Mixed Integer Programming: an overview



• We consider deterministic equivalent formulations of 2-stage SMIPs under the 
sample average approximation

• This assumption yields characteristic dual block-angular structure.

Stochastic MIPs and their deterministic equivalent
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PIPS-PSBB: Design philosophy and features

• PIPS-PSBB is a specialized solver for two-stage Stochastic Mixed Integer Programs 
that uses Branch and Bound to achieve finite convergence to optimality.

• It addresses each of the the issues associated to Stochastic MIPs:
– A Distributed Memory approach allows to partition the second stage scenario data among multiple 

computing nodes.
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PIPS-SBB: Design philosophy and features

• PIPS-SBB is a specialized solver for two-stage Stochastic Mixed Integer Programs 
that uses Branch and Bound to achieve finite convergence to optimality.

• It addresses each of the the issues associated to Stochastic MIPs:
– A Distributed Memory approach allows to partition the second stage scenario data among multiple 

computing nodes.

– As the backbone LP solver, we use PIPS-S: a Distributed Memory parallel Simplex solver for Stochastic 
Linear Programs.
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PIPS-SBB: Design philosophy and features

• PIPS-SBB is a specialized solver for two-stage Stochastic Mixed Integer Programs 
that uses Branch and Bound to achieve finite convergence to optimality.

• It addresses each of the the issues associated to Stochastic MIPs:
– A Distributed Memory approach allows to partition the second stage scenario data among multiple 

computing nodes.

– As the backbone LP solver, we use PIPS-S: a Distributed Memory parallel Simplex solver for Stochastic 
Linear Programs.

– PIPS-PSBB has a structured software architecture that is easy to expand in terms of functionality and 
features.



Our approach to Parallel Branch and Bound

• Two levels of parallelism require a layered 
organization of the MPI processors.

• In the Branch and bound communicator, 
processors exchange:

– Branch and Bound Nodes.

– Solutions.

– Lower Bound Information.

– Queue sizes and search status.

• In the PIPS-S communicator, processors 
perform in parallel:

– LP relaxations.

– Primal Heuristics.

– Branching and candidate selection.

• Strategies for ramp-up:
– Parallel Strong Branching

– Standard Branch and Bound

• Strategy for Ramp-down: intensify the 
frequency of node rebalancing.
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ug[PIPS-SBB,MPI]

Parallel Branch and Bound
Centralized control of the workload
Coarse-grained, black-box approach

Parallel Branch and Bound
Descentralized, lightweight control of 
the workload
Fine-grained approach

Parallel LP relaxations
Data Parallelization
Sequential Branch and Bound

PIPS-SBB

PIPS-S

PIPS-PSBB

ug[PIPS-SBB,MPI]

• In addition to PIPS-PSBB, we also introduce ug[PIPS-SBB,MPI]: a coarse grained external 
parallelization of PIPS-SBB.

• UG is a generic framework used to parallelize Branch & Bound based MIP solvers.
– Exploits powerful performance of state-of-the-art base solvers, such as SCIP, Xpress, Gurobi, and CPLEX.

– It uses the base solver as a black box.

• UG has been widely applied to parallelize many MIP solvers: 
– Distributed memory via MPI: ug[SCIP,MPI], ug[Xpress,MPI], ug[CPLEX,MPI]

– Shared-memory via Pthreads: ug[SCIP,Pth], ug[Xpress, Pth]



UG[PIPS-SBB,MPI]
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• UG has been successfully used to solve some open MIP problems using more than 
80.000 cores. Certainly proven to be scalable.

• ug[PIPS-SBB,MPI] co-developed with Yuji Shinano

• The second MIP solver in the world (after PIPS-PSBB) to use two levels of nested 
parallelism.



• We test our solver on SSLP instances, from the SIPLIB library.

• SSLP instances model server locations under uncertainty.

• Instances are coded as SSLPm_n_s, where s represents the number of scenarios.

• Larger number of scenarios means bigger problems

– LP relaxations of all instances fit in memory, even in CPLEX

– PIPS-SBB can handle much larger LP relaxations

• Details: see http://www2.isye.gatech.edu/~sahmed/siplib/sslp/sslp.html

• PIPSBB run on the Cab cluster:

– Each node: Intel Xeon E5-2670, 2.6 GHz, 2 CPUs x 8 cores/CPU

– 16 cores/node

– 2 GB RAM/core, 32 GB RAM/node

– Infiniband QDR interconnect

• CPLEX 12.6.2 used in some comparisons, in Vanilla setting.

Experimental performance results



• We measure parallel performance in terms of speedup, node inefficiency, and 
communication overhead:

– Speedup Sp on the time Tp needed to reach optimality by a configuration with p processors 
with respect to the time needed by a sequential baseline T1:

– Communication overhead: Fraction of time Tcomm + Tsync needed for communication and 
processor synchronization with respect to the total time of execution Texec:

– Node inefficiency: Fraction of redundant nodes explored Nr with respect to the total number 
of nodes explored Ntotal.

Experimental performance results

𝑆" =
𝑇%
𝑇"

𝐶'( =
𝑇)'** + 𝑇,-.)

𝑇/0/)

𝑁2./33 =
𝑁4

𝑁5'567



PIPS-PSBB and ug[PIPS-SBB,MPI]: Performance comparison

PIPS-PSBB:
o Scales up to 200 cores (66x).
o Total work performed remains 

within a factor of 2x w.r.t. 
sequential.

o Communication overhead 
dominates after 400 cores.

o Node inefficiency grows at a 
slower rate than ug[PIPS-
SBB,MPI].

ug[PIPS-SBB,MPI]:
o Scales up to 200 cores (33x).
o Total work varies by processor 

configuration.
o Higher communication overhead 

and higher node inefficiency.
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Performance comparison between PIPS-PSBB and ug[PIPS-SBB,MPI] when optimizing small instances. 
sslp_15_45_5 (5 scenarios, 3390 binary variables, 301 constraints)



Tuning the communication frequency of PIPS-PSBB

• PIPS-PSBB allows to modify the frequency between synchronous communications.

• Frequency defined with (x,y), where x and y represent the minimum and maximum 
number of B&B iterations that must be processed before communication takes place.

• Tighter communication increases communication overheads, but reduces work 
performed.

• The opposite takes place under loose communication.
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PIPS-PSBB Solver performance exposed: sslp_10_50_500
(500 scenarios, 250,010 binary variables, 30,001 constraints)
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PIPS-S:
• Speedup to 10 cores is 6x.
• Performance increases up 

to 20 cores.

PIPS-PSBB:
• Communication overhead 

minimal except at rampup
when LP solver is slow.



PIPS-SBB: Comparison against CPLEX

Instance Scenarios Configuration PIPS-PSBB ug[PIPS-SBB,UG] CPLEX SM CPLEX DM

Solvers PIPS-S
procs

GAP(%) (Time)(s) GAP(%) (Time)(s) Procs GAP(%) (Time)(s) Procs GAP(%) (Time)(s)

sslp_5_25_50 50 2 2 (7.45s) (8.03s) 4 (0.27s) 4 (0.27s)

sslp_5_25_100 100 2 2 (22.37s) (17.79s) 4 (0.64s) 4 (0.64s)

sslp_15_45_5 5 200 2 (107.11s) (163.53s) 16 (1.97s) 400 (6.26s)

sslp_15_45_10 10 200 2 0.09% 0.16% 16 (1.81s) 400 (15.04s)

sslp_15_45_15 15 200 2 0.25% 0.30% 16 (7.80s) 400 (15.75s)

sslp_10_50_50 50 200 10 0.13% 0.21% 16 (43.88s) 2000 0.15%(M)

sslp_10_50_100 100 200 10 0.17% 0.20% 16 (221.69s) 2000 0.16%(M)

sslp_10_50_500 500 200 10 0.24% 0.24% 16 4.91%(M) 2000 1.25%(M)

sslp_10_50_1000 1000 200 10 0.24% 0.24% 16 9.91% 2000 6.08%

sslp_10_50_2000 2000 200 10 0.26% 0.26% 16 19.93% 2000 8.11%

Time limit: 1 hour

• Distributed-memory parallelization of CPLEX is often inferior to its shared-memory counterpart.
• Both CPLEX versions run into Memory limits for some problems.

• The superior performance of CPLEX’s base solver helps in trivial and small problems.
• PIPS-SBB-based solvers show superior performance for large problems.

Performance comparison against CPLEX 12.6.2  



• We developed a light-weight decentralized distributed memory branch-and-bound 
implementation for PIPS-SBB with two degrees of parallelism:

– Processing of nodes in parallel (parallel LP relaxation, parallel heuristics, parallel 
problem branching, …).

– Branch and Bound in parallel.

• Better parallel efficiency is achieved by focusing the parallel resources in the most 
promising nodes.

• We try to reduce communication bottlenecks and achieve high processor occupancy 
via a decentralized control of the tree exploration and a lightweight mechanism for 
exchanging Branch and Bound nodes.

• Competitive performance to state-of-the-art commercial MIP solvers, in the context of 
large instances.

Conclusions



• New parallel heuristics, which leverage parallelism in order to increase the effectiveness, 
speed and scalability of primal heuristics.

• New parallel algorithms for a better distribution of work in the context of Branch & Bound.

A natural progression in the parallelization of Branch & Bound

26

The presented work contributes to the ultimate goal of improving the parallel

efficiency of Branch & Bound.

Scalable massively-parallel heuristics

Time

Work-efficient Parallel Branch & Bound

The code of PIPS-PSBB is available at: https://github.com/LLNL/PIPS-SBB



Thank You!


