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Our contribution

PIPS-PSBB*: Multi-level parallelism for Stochastic Mixed-Integer programs

Fully-featured MIP solver for any generic 2-stage Stochastic MIP. T

« Two levels of nested parallelism (B & B and LP relaxations).

» Integral parallelization of every component of Branch & Bound.

* Actually two(2) parallel solvers: Ty

« Handle large problems: parallel problem data distribution.
« Distributed-memory parallelization. /
* Novel fine-grained load-balancing strategies. ,/ ,
/ :

- PIPS-PSBB 0

° Ug[PIPS'SBB,MPI] T

*PIPS-PSBB: Parallel Interior Point Solver — Parallel Simple Branch and Bound
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Introduction

 MIPs are NP-Hard problems: Theoretically and computationally intractable.
« LP-based Branch & Bound allows us to systematically search the solution space by

subdividing the problem.
« Upper Bounds (UB) are provided by the integer solutions

found along the Branch &

Bound exploration. Lower Bounds (LB) are provided by the optimal values of the LP

relaxations.

Upper bound (UB)
GAP(%)

UB-LB
UB

Lower bound (LB)

»
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Q Infeasible node Q Fathomed Node Olnteger LP solution .Optimal solution
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Coarse-grained Parallel Branch and Bound

« Branch and bound is straightforward to parallelize: the processing of subproblems is
independent.

« Standard parallelization present in most state-of-the-art MIP solvers.
* Processing of a node becomes the sequential computation bottleneck.

« Coarse grained parallelizations are a popular option: Potential performance pitfalls
due to a master-slave approach, and relaxations are hard to parallelize.

Variable selection
Branching

LP relaxation
Primal Heuristics
Cuts
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Coarse-grained Parallel Branch and Bound

« Branch and Bound exploration is coordinated by a special process or thread.

» Worker threads solve open subproblems using a base MIP solver.

« Centralized communication poses

serious challenges: performance
FeadiCeerdinator bottlenecks and a reduction in
pTT T T T T T ! P } parallel efficiency:
: Solution Pool i : Cut Pool i
l:.':.':.'Z.':.':.':.':.’:.':.':.':.’Z.’:.’il F.’:.':.’:.':.'Z.':.':.‘:.':.’:.'Z.’:.’:.’:. — Commun|Cat|On StreSS at ramp_
i Base Solver Ly Oben SUboIobl [
___ Vopresove 1| OPemsubprovems | up and ramp-down.
— Limited rebalancing capability:
suboptimal distribution of work.
— Diffusion of information is slow.
Base solver Base solver Base solver
Subproblem MIP solving o Subproblem MIP solving o Subproblem MIP solving

l-Using MPI (or pthreads) l I-l.Jsing MPI (or pthreads) I I-Using MPI (or pthreads) l
| for communications J I for communications Jl | for communications J
L L L
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Currently available coarse-grained parallelizations

.

« Coarse-grained parallelizations may scale poorly.
» Extra work is performed when compared to the sequential case.
« Information required to fathom nodes is discovered through the optimization.

o

e ® ¢ ®

g P o’o 0’0 d B

DO Pl :o ozq 020 020 o:o DO
DR ST BbDDdEDtose

Q Processor 1 OProcessor 2 Q Processor 3 O Processor 4

» Powerful heuristics are necessary to find good feasible solutions early in the
search.
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Branch and Bound as a graph problem

 We can regard parallel Branch and Bound as a parallel graph exploration problem

« Given P processors, we define the frontier of a tree as the set of P subproblems
currently being open. The subset currently processed in parallel are the active nodes.

« We additionally define a redundant node as a subproblem, which is fathomable if the
optimal solution is known.

« The goal is to increase the efficiency of Parallel Branch and Bound by reducing the
number of redundant nodes explored.

Active nodes being currently processed in parallel

Georgia GCollege of
Tegch Conpuiiing



= IE T

Our approach to Parallel Branch and Bound

* In order to reduce the amount of redundant nodes explored, the search must fathom
subproblems by having high quality primal incumbents and focus on the most
promising nodes.

* Toincrease the parallel efficiency by:
— Generating a set of active nodes comprised of the most promising nodes.

— Employing processors to explore the smallest amount of active nodes.

« Two degrees of parallelism:

— Processing of nodes in parallel (parallel LP relaxation, parallel heuristics, parallel
problem branching, ...).

— Branch and Bound in parallel.

S
b
=]
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Fine-grained Parallel Branch and Bound

 The smallest transferrable unit of work is a Branch and Bound node.

» Because of the exchange of nodes, queues in processors become a collection of
subtrees.

« This allows for great flexibility and a fine-grained control of the parallel effort.

« Coordination of the parallel optimization is decentralized with the objective of
maximizing load balance.

Processor 1 Processor 2 Processor 3 Processor 4

Active nodes @ @ @
Queve @ = 000 |00
Q0. () (=)
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All-to-all parallel node exchange

Load balancing is maintained via
synchronous MPI collective
communications.

The lower bound of the most promising K
nodes of every processor are exchanged
and ranked.

The top K out of K -N nodes are selected
and redistributed in a round robin fashion.

Because of the synchronous nature of the
approach, communication must be used
strategically in order to avoid parallel
overheads.

Node transfers are synchronous, while the
statuses of each solver (Upper/lower
bounds, tree sizes, times, solutions, ...)
are exchanged asynchronously.
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Stochastic Mixed Integer Programming: an overview

« Stochastic programming models optimization problems involving
uncertainty.

* We consider two-stage stochastic mixed-integer programs (SMIPs) with
recourse:

— 1st stage: deterministic “now” decisions

— 2nd stage: depends on random event & first stage decisions.

miny{c'x + E[Q(x,w)]|Ax < b,x; € Z,Vj € I}
Q(x,w) = myin{qty| Wy < h—Tx,y; € Z,Vj € b}

» Cost function includes deterministic variables & expected value function of
non-deterministic parameters
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Stochastic MIPs and their deterministic equivalent )

We consider deterministic equivalent formulations of 2-stage SMIPs under the
sample average approximation

This assumption yields characteristic dual block-angular structure.

ming{c'x + E[Q(x,w)]|Ax < b,x; € Z,Vj € h}

Q(x,w) = myin{q’y\ Wy < h—Tx,y; € Z,Yj € b}

v
min clx
A
s.1.

[ A 1% 1 [bg] Common constraints Tl W

Ty W X

T1 1W x1 < 21 Independent . .
2 2 2= |72 realization

' - : : scenarios : -
Y Wn|(xn| BN

|
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PIPS-PSBB: Design philosophy and features

 PIPS-PSBB is a specialized solver for two-stage Stochastic Mixed Integer Programs
that uses Branch and Bound to achieve finite convergence to optimality.
« It addresses each of the the issues associated to Stochastic MIPs:

— A Distributed Memory approach allows to partition the second stage scenario data among multiple
computing nodes.

\/
e
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PIPS-SBB: Design philosophy and features

« PIPS-SBB is a specialized solver for two-stage Stochastic Mixed Integer Programs
that uses Branch and Bound to achieve finite convergence to optimality.

* |t addresses each of the the issues associated to Stochastic MIPs:

— A Distributed Memory approach allows to partition the second stage scenario data among multiple
computing nodes.

— As the backbone LP solver, we use PIPS-S: a Distributed Memory parallel Simplex solver for Stochastic
Linear Programs.

, O
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PIPS-SBB: Design philosophy and features
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PIPS-SBB is a specialized solver for two-stage Stochastic Mixed Integer Programs

that uses Branch and Bound to achieve finite convergence to optimality.

* |t addresses each of the the issues associated to Stochastic MIPs:

A Distributed Memory approach allows to partition the second stage scenario data among multiple
computing nodes.

As the backbone LP solver, we use PIPS-S: a Distributed Memory parallel Simplex solver for Stochastic
Linear Programs.

PIPS-PSBB has a structured software architecture that is easy to expand in terms of functionality and

features.

Problem model and solver
Branchinginfo
BAContext SMPSSInput Presolver
1 |variable
boundDirection
bound MIRCut
BbTree B
! 1 1 —
lowerBound BbNode
upperBound
1 Status
1 i ChangelnWarmStart
foundSolutions 1 b 0. childrenAlive ]
Solver HotStartinfo 1 0.." [varindex GMICut
performBblteration() newValue
BADimensions fathom(BbNode) Solve0 0.1
1 setSolver(param1,param2,param3) preProcess() 1 branch0
900 elaborateCuts() ;  |fathomO
i Its() I has parent NoGoodCut
1 CuttingPlaneManager
1 CuttingPlane
addCuttingPlane() L L
applyCut() applyCut()
Heuristic 1 1 KnapsackCover
HeuristicManager BranchingRuleManager BranchingRule [
frequency 0 1 1 1.
priority — priority
freqOffset addHeuristicO addBranchingRule() branch(
runHueristic) RunHeuristics() branch() CliqueCut
shouldItRun()
FeasibilityPump RINS RENS LocalBranching Rounding FixAndDive SolutionCrossover
MaxFracRule PseudoCostRule StrongBranchingRule
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Our approach to Parallel Branch and Bound

Two levels of parallelism require a layered

organization of the MPI processors.

In the Branch and bound communicator,
processors exchange:

- Branch and Bound Nodes.
—  Solutions.
- Lower Bound Information.

— Queue sizes and search status.

In the PIPS-S communicator, processors
perform in parallel:

— LP relaxations.
- Primal Heuristics.

—  Branching and candidate selection.

Strategies for ramp-up:
—  Parallel Strong Branching

- Standard Branch and Bound

Strategy for Ramp-down: intensify the
frequency of node rebalancing.

Branch
and
Bound
Comm 0

Branch
and
Bound
Comm 1
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ug[PIPS-SBB,MPI]

|
|
| PIPS-PSBB
|
|

: | Parallel Branch and Bound

| I Descentralized, lightweight control of
PIPS-SBB 1 :the workload

|

|

|

|

|
| 1
I Parallel LP relaxations | ug[PIPS-SBB,MPI]
I Data Parallelization :

:Sequential Branch and Bound 1

In addition to PIPS-PSBB, we also introduce ug[PIPS-SBB,MPI]: a coarse grained external
parallelization of PIPS-SBB.
UG is a generic framework used to parallelize Branch & Bound based MIP solvers.

—  Exploits powerful performance of state-of-the-art base solvers, such as SCIP, Xpress, Gurobi, and CPLEX.

— It uses the base solver as a black box.

UG has been widely applied to parallelize many MIP solvers:
—  Distributed memory via MPI: ug[SCIP,MPI], ug[Xpress,MPI], ug[CPLEX,MPI]

—  Shared-memory via Pthreads: ug[SCIP,Pth], ug[Xpress, Pth]
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UG[PIPS-SBB,MPI]

UG has been successfully used to solve some open MIP problems using more than
80.000 cores. Certainly proven to be scalable.

ug[PIPS-SBB,MPI] co-developed with Yuji Shinano

The second MIP solver in the world (after PIPS-PSBB) to use two levels of nested

parallelism.

a

UG LoadCorrdinato SR
Loads are coordinated by a special process or thread Base solver
I/O , presolve

—

o UG framework A

Base solver |ee- Base solver |- Base solver
Using API to control Using API to control Using API to control
solving algorithms solving algorithms solving algorithms

for communications for communications for communications

[Using MPI (or pthreads)] [Using MPI (or pthreads)] N [Using MPI (or pthreads)\

—
—/

J

A

Parallel Solver
Instantiation

distributed memory
ug[PIPS-SBB, MPI]

External
parallelization

Run on PC clusters and supercomputers

UG
Solver



Experimental performance results

« We test our solver on SSLP instances, from the SIPLIB library.
« SSLP instances model server locations under uncertainty.
« Instances are coded as SSLPm_n_s, where s represents the number of scenarios.
« Larger number of scenarios means bigger problems
— LP relaxations of all instances fit in memory, even in CPLEX
— PIPS-SBB can handle much larger LP relaxations
« Details: see http://wwwz2.isye.gatech.edu/~sahmed/siplib/sslp/sslp.html
« PIPSBB run on the Cab cluster:
— Each node: Intel Xeon E5-2670, 2.6 GHz, 2 CPUs x 8 cores/CPU
— 16 cores/node
— 2 GB RAM/core, 32 GB RAM/node
— Infiniband QDR interconnect
« CPLEX 12.6.2 used in some comparisons, in Vanilla setting.
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Experimental performance results

« We measure parallel performance in terms of speedup, node inefficiency, and
communication overhead:

— Speedup S, on the time T, needed to reach optimality by a configuration with p processors
with respect to the time needed by a sequential baseline T;:

T3

S = —
p

Tp

— Communication overhead: Fraction of time T, + T, N€eded for communication and
processor synchronization with respect to the total time of execution T,.:

Tcomm + Tsync

Cov =

Texec

— Node inefficiency: Fraction of redundant nodes explored N, with respect to the total number
of nodes explored Ny,

Ny

Ntotal

Ninerr =
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Total tree size

PIPS-PSBB and ug[PIPS-SBB,MPI]: Performance comparison

Performance comparison between PIPS-PSBB and ug[PIPS-SBB,MPI] when optimizing small instances.
sslp_15 45 5 (5 scenarios, 3390 binary variables, 301 constraints)

Scaling: Time to optimality
[y 3% O S W o)) -
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M PIPS-PSBB [ ug[PIPS-SBB,MPI]

PIPS-PSBB:

o Scales up to 200 cores (66x).
o Total work performed remains
within a factor of 2x w.r.t.

sequential.
o Communication overhead
dominates after 400 cores.
o Node inefficiency grows at a
slower rate than ug[PIPS-
SBB,MPI].

ug[PIPS-SBB,MPI]:

o Scales up to 200 cores (33x).

o Total work varies by processor
configuration.

o Higher communication overhead
and higher node inefficiency.
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Scaling: Time to optimality

Tuning the communication frequency of PIPS-PSBB
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M Tight Communication (10-500) [ Standard Communication (50-1000) [] Loose Communication (100-50000)

« PIPS-PSBB allows to modify the frequency between synchronous communications.

* Frequency defined with (x,y), where x and y represent the minimum and maximum
number of B&B iterations that must be processed before communication takes place.

« Tighter communication increases communication overheads, but reduces work
performed.

« The opposite takes place under loose communication.
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PIPS-PSBB Solver performance exposed: sslp_10 50 500
(500 scenarios, 250,010 binary variables, 30,001 constraints)

Total tree size
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PIPS-S:

» Speedup to 10 cores is 6x.

» Performance increases up
to 20 cores.

PIPS-PSBB:

« Communication overhead
minimal except at rampup
when LP solver is slow.
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PIPS-SBB: Comparison against CPLEX

Performance comparison against CPLEX 12.6.2

&

Instance

sslp_5_25_50
sslp_5_25_100
sslp_15_45_5
sslp_15_45_10
sslp_15_45_15
sslp_10_50_50
sslp_10_50_100
sslp_10_50_500
sslp_10_50_1000
sslp_10_50_2000

Scenarios

50
100
5
10
15
50
100
500
1000
2000

Configuration

PIPS-PSBB

ug[PIPS-SBB,UG]

CPLEX SM

CPLEX DM

Solvers PIPS-S
procs
2 2
2 2
200 2
200 2
200 2
200 10
200 10
200 10
200 10
200 10

GAP(%) (Time)(s)

(7.45s)
(22.375)
(107.11s)
0.09%
0.25%
0.13%
0.17%
0.24%
0.24%
0.26%

GAP(%) (Time)(s)

(8.03s)
(17.79s)
(163.53s)
0.16%
0.30%
0.21%
0.20%
0.24%
0.24%
0.26%

Procs

16
16
16
16
16
16
16
16

GAP(%) (Time)(s)

4.91%(M)
9.91%
19.93%

Procs

400
400
400
2000
2000
2000
2000
2000

GAP(%) (Time)(s)

1.25%(M)
6.08%
8.11%

Time limit: 1 hour

» Distributed-memory parallelization of CPLEX is often inferior to its shared-memory counterpart.
* Both CPLEX versions run into Memory limits for some problems.

» The superior performance of CPLEX’s base solver helps in trivial and small problems.
+ PIPS-SBB-based solvers show superior performance for large problems.
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Conclusions

We developed a light-weight decentralized distributed memory branch-and-bound
implementation for PIPS-SBB with two degrees of parallelism:

— Processing of nodes in parallel (parallel LP relaxation, parallel heuristics, parallel
problem branching, ...).

— Branch and Bound in parallel.

- Better parallel efficiency is achieved by focusing the parallel resources in the most
promising nodes.

« We try to reduce communication bottlenecks and achieve high processor occupancy
via a decentralized control of the tree exploration and a lightweight mechanism for
exchanging Branch and Bound nodes.

Competitive performance to state-of-the-art commercial MIP solvers, in the context of
large instances.
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A natural progression in the parallelization of Branch & Bound

.

The presented work contributes to the ultimate goal of improving the parallel

efficiency of Branch & Bound.

* New parallel heuristics, which leverage parallelism in order to increase the effectiveness,

speed and scalability of primal heuristics.

* New parallel algorithms for a better distribution of work in the context of Branch & Bound.

l Scalable massively-parallel heuristics

Work-efficient Parallel Branch & Bound

>
Time

The code of PIPS-PSBB is available at: https://github.com/LLNL/PIPS-SBB
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