
Configurable Massively Parallel Solver
for Lattice Problems

Nariaki Tateiwa(speaker)1, Yuji Shinano2, Keiichiro Yamamura1

Akihiro Yoshida1, Shizuo Kaji1, Masaya Yasuda3, Katsuki Fujisawa1

1/October/2021
Second International UG Workshop 2021
Workshop on Parallel Algorithms in Tree Search and Mathematical Optimization
@online

1 Kyushu University, Fukuoka, Japan
2 Zuse Institute Berlin, Berlin, German
3 Rikkyo University, Tokyo, Japan

Contribution and topics

We developed Shortest Vector Problem (SVP) solver using UG

CMAP-LAP: the Configurable Massive Parallel
Solver for Lattice Problem

ü First Generalized UG application
ü SVP, the combinational problem,

supports security of a post-quantum cryptography

Topics of this presentation

ü How to use the Generalized UG to parallelize our solver?
ü Unique new features for solving SVP
ü Show performances of our solver via numerical experiments

2

Outline 3

1. Contribution & Introduction

2. What is SVP?

3. Key components of parallelization

4. System of our developed solver based on UG

5. Numerical experiments

6. Summary

Outline 4

1. Contribution & Introduction

2. What is SVP?

3. Key components of parallelization

4. System of our developed solver

5. Numerical experiments

6. Summary

Topics

1. Definition of Lattice & SVP

2. Features of SVP

3. Benchmark

What is SVP ?

Lattice

5

𝐛!
𝐛"

O

fig: 2-dimensional lattice
All intersection 𝐯 in lattice are represented as

𝐯 = 𝑥!𝐛! + 𝑥"𝐛" (x!, x" ∈ ℤ)

Definition
An 𝑛-dimensional lattice is

ℒ 𝐁 ≔ '
!"#

$

𝑥!𝐛!; 𝑥! ∈ ℤ

𝐁 = 𝐛#, … , 𝐛$ are linearly independent vectors.
(𝐁 is called a “lattice basis”.)

What is SVP ?

Lattice

Definition
An 𝑛-dimensional lattice is

ℒ 𝐁 ≔ '
!"#

$

𝑥!𝐛!; 𝑥! ∈ ℤ

𝐁 = 𝐛#, … , 𝐛$ are linearly independent vectors.
(𝐁 is called a “lattice basis”.)

Randomization of lattice basis

The lattice does not change
by transformation with unimodular matrix

6

𝐛′!

𝐛′"
O

fig: 2-dimensional lattice

ℒ 𝐁 = ℒ 𝐔𝐁 ∀𝐔: Unimodular matrix
(𝑈 ∈ ℤ$×$, det(𝑈) = ±1)

𝐛!
𝐛"

All intersection 𝐯 in lattice are represented as
𝐯 = 𝑥!𝐛! + 𝑥"𝐛" (x!, x" ∈ ℤ)

What is SVP ?

Shortest Vector Problem

7

𝐛!
𝐛"

O

the shortest vector

fig: 2-dimensional lattice

Definition

The Shortest Vector Problem (SVP) asks to find
the shortest non-zero vector in the lattice

minimize '
!"#

&

𝑥!𝐛!

subject to 𝒙 ≠ 𝟎

minimize 𝐯
subject to 𝐯 ∈ ℒ(𝐁) ∖ {𝟎}

=

𝒙 = 𝑥!, … , 𝑥" ∈ ℤ"

What is SVP ?

Shortest Vector Problem

8

𝐛!
𝐛"

O

the shortest vector

fig: 2-dimensional lattice

Definition

The Shortest Vector Problem (SVP) asks to find
the shortest non-zero vector in the lattice

minimize '
!"#

&

𝑥!𝐛!

subject to 𝒙 ≠ 𝟎

minimize 𝐯
subject to 𝐯 ∈ ℒ(𝐁) ∖ {𝟎}

=

𝒙 = 𝑥!, … , 𝑥" ∈ ℤ"

What is SVP ?

Why we try to solve Shortest Vector Problem?

Features

• no single definite algorithm
• SVP supports the security of some

lattice-based cryptographies

9

Lattice-based cryptography

• Common cryptographies have risk to be
broken by quantum computers

• Lattice-based cryptography is the candidate of
new standard post-quantum cryptographies

• urgent to investigate
• security level

IC, credit card ..

If the size of the public key is large,
some of the current cryptosystems
cannot be replaced new cryptosystem
due to memory limitation.

Benchmark

SVP Challenge

• contest of solving approximate SVP
of 40 – 200 dimension

10

Kinding 𝐯 ∈ ℒ 𝐁 ∖ {𝟎}
subject to 𝐯 ≤ 1.05 𝜆# ℒ 𝐁

𝟏. 𝟎𝟓-approximate SVP

the estimated optimal value

• Sieve-algorithm solver (G6K) is major,
recently

Outline 11

1. Contribution & Introduction

2. What is SVP?

3. Key components of parallelization

4. System of our developed solver based on UG

5. Numerical experiments

6. Summary

Topics

1. ▷ Algorithms for SVP

2. Features of algorithms
for parallelization

Lattice Problem Algorithms 12

Enumeration
(Exactive)

Sieve
(Probabilistic)

d! d"
O

• Depth-first search
• Nodes of the tree correspond

to lattice vectors
• Tree contains all lattice vectors

with norm ≤ 𝑅 (parameter)

• Sampling and Reduce
• Generate shorter vectors by

addition(+) and subtraction(-)
sampled lattice vectors

• Based on birthday paradox

sampled
lattice vector

𝑜 short lattice vector
generated from
two-samples

ü pros: Low memory usage
ü cons: Huge searching time

ü dim 100 --> 10^06 years
ü dim 130 --> 10^25 years
(dim = dimension)

ü pros: High performance
ü cons: Huge memory usage

c!
c"

O d! d"
O

• Matrix transformation
• make the lattice basis as close

to orthogonal as possible

ü pros: Low memory usage
ü cons: No guarantee for finding

the shortest vector

Reduction
(Approximate)

Lattice Problem Algorithms 13

c!
c"

O d! d"
O

• Matrix transformation
• make the lattice basis as close

to orthogonal as possible

d! d"
O

• Depth-first search
• Nodes of the tree correspond

to lattice vectors
• Tree contains all lattice vectors

with norm ≤ 𝑅 (parameter)

• Sampling and Reduce
• Generate shorter vectors by

addition(+) and subtraction(-)
sampled lattice vectors

• Based on birthday paradox

ü pros: Low memory usage
ü cons: No guarantee for finding

the shortest vector

ü pros: Low memory usage
ü cons: Huge searching time

ü dim 100 --> 10^06 years
ü dim 130 --> 10^25 years
(dim = dimension)

ü pros: High performance
ü cons: Huge memory usage

𝑜 short lattice vector
generated from
two-samples

Reduction
(Approximate)

Enumeration
(Exactive)

Sieve
(Probabilistic)

sampled
lattice vector

Lattice Problem Algorithms 14

c!
c"

O d! d"
O

• Matrix transformation
• make the lattice basis as close

to orthogonal as possible

d! d"
O

• Depth-first search
• Nodes of the tree correspond

to lattice vectors
• Tree contains all lattice vectors

with norm ≤ 𝑅 (parameter)

• Sampling and Reduce
• Generate shorter vectors by

addition(+) and subtraction(-)
sampled lattice vectors

• Based on birthday paradox

𝑜 short lattice vector
generated from
two-samples

Reduction
(Approximate)

Enumeration
(Exactive)

Sieve
(Probabilistic)

ü pros: Low memory usage
ü cons: No guarantee for finding

the shortest vector

ü pros: Low memory usage
ü cons: Huge searching time

ü dim 100 --> 10^06 years
ü dim 130 --> 10^25 years
(dim = dimension)

ü pros: High performance
ü cons: Huge memory usage

sampled
lattice vector

Lattice Problem Algorithms 15

c!
c"

O d! d"
O

• Matrix transformation
• make the lattice basis as close

to orthogonal as possible

d! d"
O

• Depth-first search
• Nodes of the tree correspond

to lattice vectors
• Tree contains all lattice vectors

with norm ≤ 𝑅 (parameter)

• Sampling and Reduce
• Generate shorter vectors by

addition(+) and subtraction(-)
sampled lattice vectors

• Based on birthday paradox

𝑜 short lattice vector
generated from
two-samples

Reduction
(Approximate)

Enumeration
(Exactive)

Sieve
(Probabilistic)

ü pros: Low memory usage
ü cons: No guarantee for finding

the shortest vector

ü pros: Low memory usage
ü cons: Huge searching time

ü dim 100 --> 10^06 years
ü dim 130 --> 10^25 years
(dim = dimension)

ü pros: High performance
ü cons: Huge memory usage

sampled
lattice vector

Key components of parallelization 16

c!
c"

O d! d"
O

d! d"
O

𝑜 short lattice vector
generated from
two-samples

common features of algorithms

üBehavior changes depending on input basis
üAlgorithms can also find short vectors (not only the shortest one)
ü Interactions of different algorithms

Reduction
(Approximate)

Enumeration
(Exactive)

Sieve
(Probabilistic)

sampled
lattice vector

Key components of parallelization 17

c!
c"

O d! d"
O

d! d"
O

𝑜 short lattice vector
generated from
two-samples

Reduction
(Approximate)

Enumeration
(Exactive)

Sieve
(Probabilistic)

sampled
lattice vector

common features of algorithms

üBehavior changes depending on input basis
üAlgorithms can also find short vectors (not only the shortest one)
ü Interactions of different algorithms

Randomization of lattice basis

ℒ " = ℒ $" 			∀$: Unimodular matrix
((∈ ℤ!×!,	det(() = ±1)

The lattice does not change
by transformation with unimodular matrix

Parallel Strategy Idea

üTask parallel strategy
ü basis is randomized
ü LoadCoordinator (master) distribute basis
ü Solver (worker) run algorithm independently

18

Solver B

Solver C

c!
c"

O
Reduction
Algorithm

Solver A

Enumeration
Algorithm

Sieve
Algorithm!

Basis

b! b"
O

LoadCoordinator

Parallel Strategy Idea 19

Solver B

Solver C

c!
c"

O
Reduction
Algorithm

Solver A

Enumeration
Algorithm

Sieve
Algorithm!

Basis

b! b"
O

LoadCoordinator

Can we improve the performance
by taking advantage of lattice properties?

üTask parallel strategy
ü basis is randomized
ü LoadCoordinator (master) distribute basis
ü Solver (worker) run algorithm independently

Key components of parallelization 20

c!
c"

O d! d"
O

d! d"
O

𝑜 short lattice vector
generated from
two-samples

Reduction
(Approximate)

Enumeration
(Exactive)

Sieve
(Probabilistic)

sampled
lattice vector

common features of algorithms

üBehavior changes depending on input basis
üAlgorithms can also find short vectors (not only the shortest one)
ü Interactions of different algorithms

Key components of parallelization 21

c!
c"

O d! d"
O

d! d"
O

𝑜 short lattice vector
generated from
two-samples

Reduction
(Approximate)

Enumeration
(Exactive)

Sieve
(Probabilistic)

sampled
lattice vector

common features of algorithms

üBehavior changes depending on input basis
üAlgorithms can also find short vectors (not only the shortest one)
ü Interactions of different algorithms

Key components of parallelization

Interactions of algorithms

22

ü lattice algorithms find
• short lattice vectors,

not only shortest one
• reduced basis

ü These can be used as
input and booster
for other algorithms

Basis

BasisBasis c!
c"

O d! d"
O

Reduction

d! d"
O

Enumeration

d! d"
O

Enumeration

reduced basis

Case of Enumeration

Cost is small↓make matrix
as close to orthogonal

Key components of parallelization

Interactions of algorithms

23

ü lattice algorithms find
• short lattice vectors,

not only shortest one
• reduced basis

ü These can be used as
input and booster
for other algorithms

Basis

BasisBasis c!
c"

O d! d"
O

Reduction

reduced basis

Case of Sieve

make matrix
as close to orthogonal

Sieve-sampling

𝑜

𝑜

sampling
performance up↑

Key components of parallelization

Interactions of algorithms

24

ü lattice algorithms find
• short lattice vectors,

not only shortest one
• reduced basis

ü These can be used as
input and booster
for other algorithms

Basis c!
c"

O d! d"
O

Reduction

make matrix
as close to orthogonal

𝑜

sampling
performance up↑

vectorsd! d"
O

Enumeration

Case of Sieve

Key components of parallelization

Interactions of algorithms

25

ü lattice algorithms find
• short lattice vectors,

not only shortest one
• reduced basis

ü These can be used as
input and booster
for other algorithms

vectorsd! d"
O

Enumeration

! short lattice vector
generated from
two-samples

sampled
lattice vector

Sieve

c!
c"

O d! d"
O

Reduction

Case of Reduction

output more
orthogonality basis ↑

Key components of parallelization

By-products of the lattice algorithm

26

ü lattice algorithms find
• short lattice vectors,

not only shortest one
• reduced basis

ü These can be used as
input and booster
for other algorithms

ü However, there is no SVP solver which
effectively utilizes these interactions

Reduction
(§4.4)

Enumeration
(§4.1, 4.3)

Sieve
(§4.2, 4.3)

reduced basis short vectors current shortest
vector found

Outline 27

1. Contribution & Introduction

2. What is SVP?

3. Key components of parallelization

4. System of our solver based on UG

5. Numerical experiments

6. Summary

Topics

1. ▷ Overview

2. Communication of Task

3. Checkpointing

4. Asynchronously
Communication

CMAP-LAP: Our new solver

ü Supervisor-Worker parallelization type
ü Heterogeneous algorithm execution
ü Acceleration by asynchronously

sharing lattice vectors via data pool in LC

28

Solver B

Solver C

c!
c"

O
Reduction
Algorithm

Solver A

Enumeration
Algorithm

Sieve
Algorithm!

Vector Pool

Basis Pool

b! b"
O

LoadCoordinator

c!
c"

O

CMAP-LAP: Our new solver 29

Flow of execution

Vector Pool

Basis Pool
Solver B (Rank = 2)

Solver C (Rank = 3)

Solver A (Rank = 1)

LoadCoordinator (Rank = 0)

• Create MPI processes
• Start LoadCoordinator process in Rank 0,

and Solver processes in other Rank

CMAP-LAP: Our new solver 30

Flow of execution

Vector Pool

Give Instance

Basis Pool

b! b"
O

Solver B

Solver C

Solver A

LoadCoordinator

CMAP-LAP: Our new solver 31

Flow of execution

Vector Pool

Basis Pool

b! b"
O

Task

Short Vector
Pool

Task
• instance
• algorithm
• parameters

LoadCoordinator

Solver B

Solver C

Solver A

create

CMAP-LAP: Our new solver 32

Flow of execution

Vector Pool

Basis Pool

b! b"
O

Task

Short Vector
Pool

Task
• instance
• algorithm
• parameters

create c!
c"

O
Reduction
Algorithm

LoadCoordinator

Solver B

Solver C

Solver A

CMAP-LAP: Our new solver 33

Flow of execution

Vector Pool

Basis Pool

b! b"
O

Task

Short Vector
Pool

Task
• instance
• algorithm
• parameters

create
c!

c"

O
Reduction
Algorithm

Enumeration
Algorithm

LoadCoordinator

Solver B

Solver C

Solver A

CMAP-LAP: Our new solver 34

Flow of execution

Vector Pool

Basis Pool

b! b"
O

Task

Short Vector
Pool

Task
• instance
• algorithm
• parameters

create

c!
c"

O
Reduction
Algorithm

Enumeration
Algorithm

Sieve
Algorithm!

LoadCoordinator

Solver B

Solver C

Solver A

CMAP-LAP: Our new solver 35

Flow of execution

Vector Pool

Basis Pool

b! b"
O

c!
c"

O
Reduction
Algorithm

Enumeration
Algorithm

Sieve
Algorithm!

c!
c"

O

Send Basis
Send/Receive Vector

LoadCoordinator

Solver B

Solver A

Solver C

CMAP-LAP: Our new solver 36

Flow of execution

Vector Pool

Basis Pool

b! b"
O

c!
c"

O
Reduction
Algorithm

Enumeration
Algorithm

Sieve
Algorithm!

c!
c"

O

Send Basis
Send/Receive Vector

LoadCoordinator

Solver B

Solver A

Solver C

CMAP-LAP: Our new solver 37

Flow of execution

Vector Pool

Basis Pool

b! b"
O

Enumeration
Algorithm

Sieve
Algorithm!

c!
c"

O

LoadCoordinator

Solver B

Solver A

Solver C

finish

CMAP-LAP: Our new solver 38

Flow of execution

Vector Pool

Basis Pool
Enumeration

Algorithm

Sieve
Algorithm!

c!
c"

O

LoadCoordinator

Solver B

Solver A

Solver C

Task

Short Vector
Pool

Task
• instance
• algorithm
• parameters

create
Reduction
Algorithmb! b"

O

CMAP-LAP
(our new SVP

solver)

Implementation of Our new solver 39

UG
(for only B&B solver)

Generalized UG

UG_BB

2021

refactoring almost
from scratch

B&B
based
solvers

inheritance

… B&B
based
solvers

…MAP-SVP
(our previous
SVP solver)

~2020

Implementation of Our new solver 40

Generalized UG

UG_BB

CMAP-LAP
(our new SVP

solver)

2021~2020

inheritance

B&B
based
solvers

…

inheritance

B&B
based
solvers

… MAP-SVP
(our previous
SVP solver)

UG
(for only B&B solver)

refactoring almost
from scratch

Implementation of Our new solver 41

Generalized UG

UG_BB

2021

B&B
based
solvers

…

Generalized UG provides

• Customable and asynchronous
communication API for Task and
other information

• Checkpointing and restart
functionality

• Both MPI and Pthread
communicators can be selected,
and hybrid parallelization is
possible by combining them

inheritance

CMAP-LAP
(our new SVP

solver)

Implementation of Our new solver 42

Receive
Task

Basis Pool
Basis

⋯Basis ⋯

Solver Pool

Message Handler

Solver

Vec
Vec

Vec
Vec TaskTask

⋯Task
Solver

Solver

⋯

Message Handler ParaSolver

Algorithm

Status

Vecbasis

+・Parameters
・Initial StatusBasis

Task

Vec

Vector Pool

LoadCoordinator (LC)
• Some data pool created in

LoadCoordinator for
sharing lattice basis and
vector, and checkpointing

Outline 43

1. Contribution & Introduction

2. What is SVP?

3. Key components of parallelization

4. System of our solver based on UG

5. Numerical experiments

6. Summary

Topics

1. Overview

2. ▷ Communication of Task

3. Asynchronously
Communication

4. Checkpointing

Task

Task is Triple of

• Instance
• Basis 𝐁 ∈ ℤ$×$

• Algorithm
• type of algorithm

• Parameters
• Parameters change during

execution of the algorithm

44

Basis Pool
Basis

⋯Basis

Solver Pool

Solver

Task

Task

Task
Solver

Solver

⋯

Message Handler ParaSolver

LoadCoordinator (LC)

pop

Task

Create Send Receive Task

Task

Task is Triple of

• Instance
• Basis 𝐁 ∈ ℤ$×$

• Algorithm
• type of algorithm

• Parameters
• Parameters change during

execution of the algorithm

45

Basis Pool
Basis

⋯Basis

Solver Pool

Solver

Task

Task

Task
Solver

Solver

⋯

Message Handler ParaSolver

LoadCoordinator (LC)

Task

send

Create Send Receive Task

Asynchronously Communication

Create Send Receive Task

46

Basis Pool
Basis

⋯Basis

Solver Pool

Solver

Task

Task

Task
Solver

Solver

⋯

Message Handler ParaSolver

LoadCoordinator (LC)

Algorithm function

+・Parameters
・Initial StatusBasis

Task
c!

c"

O d! d"
O

Reduction

runAlgorithm(
basis, parameters, this)

ParaSolver object pointer

ParaSolver class object executes

=

Asynchronously Communication 47

Basis Pool
Basis

⋯Basis

Solver Pool

Task

Task

Task
Solver

Solver

⋯

LoadCoordinator (LC)
function runAlgorithm(basis, params, *paraSolver){

while(algorithm is not finished){
runSubroutine(basis, params, paraSolver);
communicateToLC(paraSolver);
// send or receive lattice vectors and basis
// asynchronously

}
}

Solver

Message Handler ParaSolver

Algorithm function

c!
c"

O d! d"
O

Reduction

Outline 48

1. Contribution & Introduction

2. What is SVP?

3. Key components of parallelization

4. System of our solver based on UG

5. Numerical experiments

6. Summary

Topics

1. Overview

2. Communication of Task

3. ▷ Asynchronously
Communication

4. Checkpointing

Asynchronously Communication – non-blocking version – 49

Algorithm

Solver

Vectors

run
subroutine

run
subroutine

Vectors Vectors

ISend

communicate
to LC

IProbe IProbe

Communicator

run
subroutine

communicate
to LC

LoadCoordinator

want to need the short vectors

Asynchronously Communication – non-blocking version – 50

Algorithm

Solver

Vectors

run
subroutine

run
subroutine

Vectors Vectors

ISend

communicate
to LC

IProbe IProbe

Communicator

ISend

run
subroutine

communicate
to LC

LoadCoordinator

• communicator send “vector request” to LC by Isend (MPI_Isend),
which is non-blocking function

vector
request

vector
request

Asynchronously Communication – non-blocking version – 51

Algorithm

Solver

Vectors

run
subroutine

Vectors Vectorsvector
request

ISend

communicate
to LC

IProbe

Communicator

vector
request

ISend

run
subroutine

IProbe

run
subroutine

communicate
to LC

LoadCoordinator

• Solver return to running algorithm
• In subroutine, iProbe (MPI_Iprobe) is called to check the message

run
subroutine

communicate
to LC

Asynchronously Communication – non-blocking version – 52

Algorithm

Solver

LoadCoordinator

run
subroutine

Vectorsvector
request

communicate
to LC

Communicator

vector
request

ISend

Vectors

IProbe

vectors

ISend

• LC prepare vectors according to the vector request
• LC send vectors by Isend (MPI_Isend)

IProbe

run
subroutine

vector
request

ISend

run
subroutine

communicate
to LC

Asynchronously Communication – non-blocking version – 53

Algorithm

Solver

LoadCoordinator

run
subroutine

Vectors

communicate
to LC

Communicator

vector
request

vectors

ISend

• communicator receives vectors and keep them

run
subroutine

IProbe

vectors

vector
request

vector
request

ISend

run
subroutine

communicate
to LC

IProbe

Asynchronously Communication – non-blocking version – 54

Algorithm

Solver

LoadCoordinator

run
subroutine

Communicator

vectors

ISend

• In the following communication part,
the algorithm can use the vector received by the communicator

IProbe

vectors vectors

communicate
to LC

run
subroutine

vector
request

vector
request

ISend

run
subroutine

communicate
to LC

vectors

ISend

IProbe

run
subroutine

IProbe

vectors

Asynchronously Communication – non-blocking version – 55

Algorithm

Solver

LoadCoordinator

run
subroutine

Communicator

• Then, Solver run subroutine again …

vectors

communicate
to LC

Asynchronously Communication – non-blocking version – 56

Algorithm

Solver

run
subroutine

run
subroutine

vector
request

Communicator

vector
request

ISend

run
subroutine

communicate
to LC

communicate
to LC

LoadCoordinator

communicate
to LC

vectors

ISend

vectors vectors

• Even if LC delays in replying to a vector request,
algorithm can receive vectors more next communication part

• SVP algorithm can incorporate vectors at any time

Delay replay to request

Outline 57

1. Contribution & Introduction

2. What is SVP?

3. Key components of parallelization

4. System of our solver based on UG

5. Numerical experiments

6. Summary

Topics

1. Overview

2. Communication of Task

3. Asynchronously
Communication

4. ▷ Checkpointing

Checkpointing 58

Basis Pool
Basis

⋯Basis

Solver Pool

Solver

Task

Task

Task
Solver

Solver

⋯

Message Handler ParaSolver

LoadCoordinator (LC)

+Basis

Task

Algorithm function

c!
c"

O d! d"
O

Reduction

send &
update・Parameters

・Initial Status

• Solver update task
according to the progress
of algorithm

• Solver send update Task to
LC, and LC replaces it from
old task in solver pool

Checkpointing 59

Solver Pool

Task

Task
Solver

Solver

⋯

LoadCoordinator (LC)

write checkpoint files
(Instance, Algorithm, Parameters)
for all solvers

• Write compressed data in Solver
Pool into checkpointing files, and
data in other pools write to files, too

Checkpointing 60

load checkpoint files
(Instance, Algorithm, Parameters)
for all solvers

Restart

Load checkpoint file and store data into
solver pool

60

Solver Pool

Task

Task
Solver

Solver

⋯

LoadCoordinator (LC)

Checkpointing 61

Basis Pool
Basis

⋯Basis

Solver Pool

Task

Task

Task
Solver

Solver

⋯

LoadCoordinator (LC)

Solver

Message Handler ParaSolver

+・Parameters
・Initial StatusBasis

Task
Algorithm

c!
c"

O d! d"
O

Reduction

Restart

Load checkpoint file and
store data into solver pool

Outline 62

1. Contribution & Introduction

2. What is SVP?

3. Key components of parallelization

4. System of our solver

5. Numerical experiments

6. Summary

Numerical Experiments

New solution for SVP Challenge

63

• CMAP-LAP had succeeded in finding
shorter lattice vectors in
104, 111, 121, and 127
dimensions of the SVP Challenge.

• CMAP-LAP finds a sufficiently short
vector in a reasonably short time.
• The G6K, a famous SVP solver,

reported taking
14 days = 336 hours
to find a sufficiently short vector for
a 127-dimensional lattice

App. factor := approximation factor of the incumbent lattice vector

CMAP-LAP

CMAP-LAP

Numerical Experiments

New solution for SVP Challenge

64

• CMAP-LAP had succeeded in finding
shorter lattice vectors in
104, 111, 121, and 127
dimensions of the SVP Challenge.

• CMAP-LAP finds a sufficiently short
vector in a reasonably short time.
• The G6K, a famous SVP solver,

reported taking
14 days = 336 hours
to find a sufficiently short vector for
a 127-dimensional lattice

CMAP-LAP

CMAP-LAP

Numerical Experiments

New solution for SVP Challenge

65

• CMAP-LAP had succeeded in finding
shorter lattice vectors in
104, 111, 121, and 127
dimensions of the SVP Challenge.

• CMAP-LAP finds a sufficiently short
vector in a reasonably short time.
• The G6K, a famous SVP solver,

reported taking
14 days = 336 hours
to find a sufficiently short vector for
a 127-dimensional lattice

CMAP-LAP

CMAP-LAP

max #process is 91,200 in HLRN

Numerical Experiments

New solution for SVP Challenge

66

• CMAP-LAP had succeeded in finding
shorter lattice vectors in
104, 111, 121, and 127
dimensions of the SVP Challenge.

• CMAP-LAP finds a sufficiently short
vector in a reasonably short time.
• The G6K, a famous SVP solver,

reported taking
14 days = 336 hours
to find a sufficiently short vector for
a 127-dimensional lattice

CMAP-LAP

CMAP-LAP

App. factor := estimated
approximation factor of the

incumbent solution

Numerical Experiments

Scalability

67

• Scalability keeps even in the larger-scale, e.g.,
100,032 processes

• Metric is Root Hermite Factor 𝜸 ⁄𝟏 𝒏,
which is an index to measure
the output quality of a reduction algorithm

𝛾 ⁄# $ ≔
𝐛

vol 𝐿 ⁄# $

#/$

where 𝐛 is the shortest basis vector
output by reduction algorithm.

• Smaller 𝛾 ⁄# $ means that output quality is good
and find shorter vector

• All solver run Reduction (DeepBKZ) algorithm

Numerical Experiments

Sharing efficiency

• Execute with different vector pool size
• Size of pool = 0 (blue)

⇔ no sharing
• Size of pool = 1 (orange)

⇔ sharing only incumbent vector
• Size of pool = 100,000 (green)

⇔ sharing almost all short vectors

• All solver run Reduction (DeepBKZ)
algorithm

• With the effect of sharing vectors,
the Root Hermite Factor could get smaller

68

Numerical Experiments

Heterogeneously efficiency

• Execute with different algorithm
configuration

• #(Reduction, Enumeration, Sieve)
• = (143, 0, 0) (blue)
• = (126, 16, 1) (orange)
• = (110, 32, 1) (green)
• = (78, 64, 1) (red)

• There was difference in results
depending on the configuration

• For further improvement,
it is necessary
• tuning parameters
• dynamic modification of the

configuration

69

Future work

Numerical Experiments

Heterogeneously efficiency

• Execute with different algorithm
configuration

• #(Reduction, Enumeration, Sieve)
• = (143, 0, 0) (blue)
• = (126, 16, 1) (orange)
• = (110, 32, 1) (green)
• = (78, 64, 1) (red)

• There was difference in results
depending on the configuration

• For further improvement,
it is necessary
• tuning parameters
• dynamic modification of the

configuration

70

Future work

Numerical Experiments: communication overhead

Parallelization performance of UG

71

16 32 48 64 84 104 124 144 180 1024
I72

2048
I72

10−2

10−1

100

101

102

7L
m

e
[s

]

start LdOe tLme oI each soOver

16 32 48 64 84 104 124 144 180 1024
I72

2048
I72

10−7

10−5

10−3

10−1

7L
m

e
[s

]

waLt LdOe tLme oI each soOver

16 32 48 64 84 104 124 144 180 1024
I72

2048
I72

1umber oI Srocesses

102

104

106

108

Co
un

t

7otaO number oI communLcatLons between LC and 6oOvers

send
receLve

LC

Solver
start

start

distributes
instance

start idle time

send / receive
vectors

wait idle time

• Definition of idle times

Numerical Experiments: communication overhead

Parallelization performance of UG

72

16 32 48 64 84 104 124 144 180 1024
I72

2048
I72

10−2

10−1

100

101

102

7L
m

e
[s

]

start LdOe tLme oI each soOver

16 32 48 64 84 104 124 144 180 1024
I72

2048
I72

10−7

10−5

10−3

10−1

7L
m

e
[s

]

waLt LdOe tLme oI each soOver

16 32 48 64 84 104 124 144 180 1024
I72

2048
I72

1umber oI Srocesses

102

104

106

108

Co
un

t

7otaO number oI communLcatLons between LC and 6oOvers

send
receLve

• CMAP-LAP ran for two hours with
100-dimensional SVP as input

• As the number of processes increases,
the LC’s load increases

• Although the LC's load increases, idle
time is much less than the total
running time per hour.

Summary

ü Update some SVP Challenge records
ü Show scalability and low communication overhead

sharing and heterogeneously efficiency of our solver

73

ü Supervisor-Worker parallelization type
ü Heterogeneous algorithm execution
ü Acceleration by asynchronously

sharing lattice vectors

Solver B

Solver C

c!
c"

O
Reduction
Algorithm

Solver A

Enumeration
Algorithm

Sieve
Algorithm!

Vector Pool

Basis Pool

b! b"
O

LoadCoordinator

c!
c"

O

ü We developed a parallel solver for SVP based on Generalized UG

