Configurable Massively Parallel Solver
for Lattice Problems

Nariaki Tateiwa(speaker)?, Yuji Shinano?, Keiichiro Yamamura?
Akihiro Yoshida?, Shizuo Kaji!, Masaya Yasuda3, Katsuki Fujisawa*

1 Kyushu University, Fukuoka, Japan
2 Zuse Institute Berlin, Berlin, German
3 Rikkyo University, Tokyo, Japan

1/0ctober/2021
Second International UG Workshop 2021
Workshop on Parallel Algorithms in Tree Search and Mathematical Optimization

@online



. -
Contribution and topics

We developed Shortest Vector Problem (SVP) solver using UG

CMAP-LAP: the Configurable Massive Parallel
Solver for Lattice Problem

v’ First Generalized UG application

v SVP, the combinational problem,
supports security of a post-quantum cryptography

Topics of this presentation

v' How to use the Generalized UG to parallelize our solver?
v Unique new features for solving SVP
v Show performances of our solver via numerical experiments



.
Outline

1. Contribution & Introduction

2.What is SVP?

3. Key components of parallelization

4.System of our developed solver based on UG
5. Numerical experiments

6. Summary



Outline

Topics
2. What is SVP? {
1. Definition of Lattice & SVP

2. Features of SVP

3. Benchmark




What is SVP ?

Lattice

Definition
An n-dimensional lattice is

L(B) = {Z x;b;; x; € Z}

i=1
B = (by, ..., b,,) are linearly independent vectors.
(B is called a “lattice basis”.)

fig: 2-dimensional lattice

All intersection v in lattice are represented as
V= x1b1 + xzbz (Xl,XZ € Z)



. >
What is SVP ?

Lattice

Definition
An n-dimensional lattice is

L(B) = {z x;b;; x; € Z}

i=1
B = (by, ..., b,,) are linearly independent vectors.
(B is called a “lattice basis”.)

Randomization of lattice basis

L(B) = L(UB) VU: Unimodular matrix
(U € 7N, det(U) = +1)

The lattice does not change fig: 2-dimensional lattice

by transformation with unimodular matrix All intersection v in lattice are represented as

V = x1b1 + xzbz (Xl,XZ € Z)



.
What is SVP ?

Shortest Vector Problem
Definition

The Shortest Vector Problem (SVP) asks to find
the shortest non-zero vector in the lattice

minimize |[|v||
subjectto v € L(B) \ {0}

minimize
X = (xl, ...,XN) € ZN

x;b;
1
0

subject to X *

fig: 2-dimensional lattice



What is SVP ?

Shortest Vector Problem
Definition

The Shortest Vector Problem (SVP) asks to find
the shortest non-zero vector in the lattice

the shortest vector

minimize ||v]| O
subjectto v € L(B) \ {0}

I b,

N bl
z xib;
i=1

subject to x =0 fig: 2-dimensional lattice

minimize
X = (xl, ...,xN) € ZN




.
What is SVP ? 9

Why we try to solve Shortest Vector Problem?

Features Lattice-based cryptography
* no single definite algorithm « Common cryptographies have risk to be
* SVP supports the security of some broken by quantum computers
lattice-based cryptographies  Lattice-based cryptography is the candidate of

new standard post-quantum cryptographies
* urgent to investigate
e security level

/\

If the size of the public key is large,
some of the current cryptosystems
cannot be replaced new cryptosystem

\_ IC, credit card .. due to memory limitation. )




Benchmark

SVP Challenge

e contest of solving approximate SVP

of 40 — 200 dimension
— 1.05-approximate SVPp —
finding veLB)\ {0}
subject to [|v]| < 1.05 Al(L(B))

HALL OF FAME

. J
\ 4

the estimated optimal value

* Sieve-algorithm solver (G6K) is major,
recently

Position Dimension

1

2

10

180

178

176

170

158

157

156

155

154

153

Euclidean
Norm

3509

3447

3487

3438

3240

3320

3219

3165

3200

3192

Contestant
L. Ducas, M. Stevens, W. van Woerden
L. Ducas, M. Stevens, W. van Woerden
L. Ducas, M. Stevens, W. van Woerden

L. Ducas, M. Stevens, W. van Woerden

Sho Hasegawa, Yuntao Wang, Eiichiro
Fujisaki

L. Ducas, M. Stevens, W. van Woerden

Sho Hasegawa, Yuntao Wang, Eiichiro
Fujisaki
M. Albrecht, L. Ducas, G. Herold, E.
Kirshanova, E. Postlethwaite, M.
Stevens, P. Karpman

Sho Hasegawa, Yuntao Wang, Eiichiro
Fujisaki
Martin Albrecht, Leo Ducas, Gottfried
Herold, Elena Kirshanova, Eamonn
Postlethwaite, Marc Stevens

Algorithm
Sieving
Sieving
Sieving
Sieving
Sieving
Sieving
Sieving
Sieving
Sieving

Sieving

Subm. Approx.
Date Factor
2021-
02-8
2021-
02-8
2020-
10-13
2020-
05-12
2021-
01-22
2019-
05-20
2021-
01-22

1.04002

1.02725

1.04411

1.04690

1.02311

1.04906

1.01986

2018-

Co-ig 1:00803

2021-
0a1 1:02258
2018-

Shig 102102



Outline

3. Key components of parallelization <’ Topics

1. > Algorithms for SVP

2. Features of algorithms
for parallelization

11



Lattice Problem Algorithms

Enumeration

Reduction

12

Sieve

( (Exactive)

* Depth-first search

* Nodes of the tree correspond
to lattice vectors

* Tree contains all lattice vectors
with norm < R ( parameter)

v pros: Low memory usage

v’ cons: Huge searching time
v" dim 100 --> 10106 years
v" dim 130 --> 10725 years
(dim = dimension)

( (Approximate)

e  Matrix transformation
* make the lattice basis as close
to orthogonal as possible

v’ pros: Low memory usage
v" cons: No guarantee for finding
the shortest vector

(Probabilistic) )

sampled
X lattice vector

short lattice vector
generated from
two-samples

¥ X

 Sampling and Reduce
* Generate shorter vectors by

addition(+) and subtraction(-)
sampled lattice vectors
 Based on birthday paradox

v’ pros: High performance
v’ cons: Huge memory usage




Lattice Problem Algorithms

Enumeration
(Exactive)

Depth-first search

Nodes of the tree correspond
to lattice vectors

Tree contains all lattice vectors
with norm < R ( parameter)

pros: Low memory usage
cons: Huge searching time
v dim 100 --> 10"06 years
v' dim 130 --> 10725 years
(dim = dimension)

( (Approximate)

Reduction

13

Sieve

Matrix transformation
make the lattice basis as close
to orthogonal as possible

v’ pros: Low memory usage
v" cons: No guarantee for finding
the shortest vector

(Probabilistic) )

sampled
X lattice vector

short lattice vector
generated from
two-samples

¥ X

 Sampling and Reduce
* Generate shorter vectors by

addition(+) and subtraction(-)
sampled lattice vectors
 Based on birthday paradox

v’ pros: High performance
v’ cons: Huge memory usage




Lattice Problem Algorithms 14

Enumeration Reduction Sieve
( (Exactive) A (Approximat ( (Probabilistic) )

________ sampled
""""" X lattice vector
. 3 0 ( ; ; ) short lattice vector
~~~~~~ e L e ; X X gener ated fr om
LT e . v x o samples

 Sampling and Reduce

* Generate shorter vectors by
addition(+) and subtraction(-)
sampled lattice vectors

 Based on birthday paradox

e Matrix transformation
* make the lattice basis as close
to orthogonal as possible

* Depth-first search

* Nodes of the tree correspond
to lattice vectors

* Tree contains all lattice vectors
with norm < R ( parameter)

v’ pros: High performance
v’ cons: Huge memory usage

v/ pros: Low memory usage
v cons: No guarantee for finding
the shortest vector

v pros: Low memory usage

v’ cons: Huge searching time
v" dim 100 --> 10106 years
v" dim 130 --> 10725 years
(dim = dimension)




Lattice Problem Algorithms

Enumeration

Reduction

( (Exactive)

* Depth-first search

* Nodes of the tree correspond
to lattice vectors

* Tree contains all lattice vectors
with norm < R ( parameter)

v pros: Low memory usage

v’ cons: Huge searching time
v" dim 100 --> 10106 years
v" dim 130 --> 10725 years
(dim = dimension)

Matrix transformation
make the lattice basis as close
to orthogonal as possible

v’ pros: Low memory usage
v" cons: No guarantee for finding
the shortest vector

15

Sieve
(Probabilistic)

sampled
lattice vector

short lattice vector
generated from
X two-samples

Sampling and Reduce
Generate shorter vectors by
addition(+) and subtraction(-)
sampled lattice vectors
Based on birthday paradox

v’ pros: High performance
v’ cons: Huge memory usage




Key components of parallelization 16

Enumeration Reduction Sieve
(Exactive) 1 ( (Approximate) 1 ( (Probabilistic) ‘
sampled
X lattice vector
X @ |
0 short lattice vector
X X generated from
x X two-samples

common features of algorithms

v’ Behavior changes depending on input basis
v’ Algorithms can also find short vectors (not only the shortest one)
v’ Interactions of different algorithms



Key components of parallelization 17

Enumeration Reduction Sieve
(Exactive) 1 ( (Approximate) 1 ( (Probabilistic) ‘
""" sampled
X lattice vector
X @ |
0 short lattice vector
X X generated from
x X two-samples

common features of algorithms
Randomization of lattice basis
v’ Behavior changes depending on input basis
v’ Algorithms can also find short vectors (not only t| £(B) = £(UB) VU: Unimodular matrix
v’ Interactions of different algorithms (U € Z™", det(U) = +1)

The lattice does not change
by transformation with unimodular matrix



Parallel Strategy Idea

v’ Task parallel strategy
v’ basis is randomized
v LoadCoordinator (master) distribute basis
v" Solver (worker) run algorithm independently

_ LoadCoordinator .
Basis

— Solver A

Reduction
Algorithm

——)

— Solver B
Enumeration
Algorithm
— Solver C
Sieve
X
X Algorithm

E——




Parallel Strategy Idea

v’ Task parallel strategy

v’ basis is randomized
v LoadCoordinator (master) distribute basis

v" Solver (worker) run algorithm independently

_ LoadCoordinator .
Basis

Can we improve the performance

by taking advantage of lattice properties?

— Solver A
<< Reduction
Algorithm
— Solver B
Enumeration
Algorithm
— Solver C
« Sieve
X @ Algorithm
x X E——
X X

19



Key components of parallelization 20

Enumeration Reduction Sieve
(Exactive) 1 ( (Approximate) 1 ( (Probabilistic) ‘
sampled
X lattice vector
X @ |
0 short lattice vector
X X generated from
x X two-samples

common features of algorithms

v’ Behavior changes depending on input basis
v’ Algorithms can also find short vectors (not only the shortest one)
v’ Interactions of different algorithms



Key components of parallelization 21

Enumeration Reduction Sieve
(Exactive) 1 ( (Approximate) 1 ( (Probabilistic) ‘
sampled
X lattice vector
X @ |
0 short lattice vector
X X generated from
x X two-samples

common features of algorithms

v’ Behavior changes depending on input basis
v’ Algorithms can also find short vectors (not only the shortest one)
v’ Interactions of different algorithms



Key components of parallelization 22

Interactions of algorithms

v’ lattice algorithms find
* short lattice vectors,
not only shortest one — Enumeration —

* reduced basis

Case of Enumeration

v" These can be used as

input and booster .
for other algorithms — Reduction — — Enumeration —
M* : o AR

make matrix reduced basis Cost is smallJd,
as close to orthogonal




Key components of parallelization 23

Interactions of algorithms Sieve-sampling
Case of Sieve

v’ lattice algorithms find
* short lattice vectors,

not only shortest one M >
 reduced basis
v These can be used as

input and booster
for other algorithms

—— Reduction —
NS, et sampling

make matrix reduced basis performance upf
as close to orthogonal




Key components of parallelization 24

Interactions of algorithms
Case of Sieve

v’ lattice algorithms find
* short lattice vectors, _
not only shortest one [~ Enumeration —

* reduced basis 2 éi ___ | vectors

MOOOKX XX |
v" These can be used as
input and booster / X

for other algorithms

sampling

make matrix performance up
as close to orthogonal




Key components of parallelization 25

Interactions of algorithms

v’ lattice algorithms find Case of Reduction
* short lattice vectors,

not only shortest one
* reduced basis

— Enumeration —
f'i*’{” " 2 g%i vectors
v' These can be used as e T | XOOOKXXX \

input and booster -
for other algorithms —  Sieve / :
— Reduction

sampled
X lattice vector

0 short lattice vector
x X generated from
x X two-samples

output more
orthogonality basis



. -
Key components of parallelization

By-products of the lattice algorithm

v’ lattice algorithms find
* short lattice vectors, [ Reduction ]
/

not only shortest one
* reduced basis

/ \
/ \
/ \

v" These can be used as

Y ¥
input and booster Enumeration Sieve
for other algorithms =

v However, there is no SVP solver which —_——— — >
effectively utilizes these interactions reduced basis short vectors ~ current shortest
vector found




Outline

4.System of our solver based on UG

Topics
1. [> Overview
2. Communication of Task

3. Checkpointing

4. Asynchronously
Communication

27




CMAP-LAP: Our new solver

v’ Supervisor-Worker parallelization type

v’ Heterogeneous algorithm execution — Solver A —
v" Acceleration by asynchronously "‘fi;‘_tiffvf;;j‘j_if-4;f;f;f’;f;; Reduction
sharing lattice vectors via data pool in LC g Algorithm
— LoadCoordinator N
r ) — Solver B
Basis Pool
Enumeration
- Algorithm
. — ’ — Solver C
Vector Pool x Sieye
X @ Algorithm
x X E——
11T <5




.
CMAP-LAP: Our new solver

Flow of execution

e Start LoadCoordinator process in Rank O,

—

Create MPI processes

and Solver processes in other Rank

LoadCoordinator (Rank = 0)

~

Basis Pool

— Solver A (Rank = 1)

— Solver B (Rank = 2)

Vector Pool

\

— Solver C (Rank = 3)

29



CMAP-LAP: Our new solver

Flow of execution

— Solver A
Give Instance
~— LoadCoordinator a
1 ) — Solver B
Basis Pool
- ’ — Solver C
Vector Pool




CMAP-LAP: Our new solver

Flow of execution

—

create

LoadCoordinator

7~

Basis Pool /

Task

* instance
 algorithm
* parameters

)

Vector Pool

— Solver A

— Solver B

\

— Solver C

31



CMAP-LAP: Our new solver

Flow of execution

—

create

LoadCoordinator

Task

~

Basis Pool /

* instance
 algorithm

* parameters

.

7

)

Vector Pool

ya

32

— Solver A \

Reduction
Algorithm

——)

— Solver B

\

— Solver C




CMAP-LAP: Our new solver

Flow of execution

~— LoadCoordinator

create
_W

~

Basis Pool

Task

* instance
 algorithm
* parameters

J

Vector Pool

— Solver A
< Reduction
Algorithm
— Solver B
Enumeration
Algorithm
— Solver C

33



CMAP-LAP: Our new solver

Flow of execution

~— LoadCoordinator

~

Basis Pool

create

Task

* instance
e algorithm

Vector Pool

* parameters

.

— Solver A

Reduction
Algorithm

——)

J

|

— Solver B
Enumeration
Algorithm
— Solver C
Sieve
X
X Algorithm
x X E——
X

34



CMAP-LAP: Our new solver

Flow of execution

. — Solver A
Send Basis

Send/Receive Vector Reduction

Algorithm

)

~— LoadCoordinator

r — Solver B
Basis Pool
Enumeration
Algorithm
) — Solver C
Vector Pool % Sieve
X @ Algorithm
x X E——
I I x X




CMAP-LAP: Our new solver

Flow of execution

—

Send Basis
Send/Receive Vector

LoadCoordinator

~

Basis Pool

Vector Pool

L]

— Solver A

Reduction
Algorithm

——)

— Solver B
Enumeration
Algorithm
— Solver C
« Sieve
X, Algorithm

E——

36



CMAP-LAP: Our new solver

Flow of execution

—

finish

LoadCoordinator

7~

Basis Pool

Vector Pool

L]

— Solver A x
— Solver B \
Enumeration
Algorithm
— Solver C
Sieve
X
X Algorithm

I )

37



CMAP-LAP: Our new solver

Flow of execution

— Solver A
Reduction
create Algorithm
~— LoadCoordinator Task L —
r - — Solver B
Basis Pool / * Instance
e e algorithm E';\‘I‘g“(‘)‘:ifta;r':"
* parameters E——
) ) — Solver C
Vector Pool % Sieve
X, Algorithm
X

38



. 4
Implementation of Our new solver

~2020 2021
UG refactoring almost
from scratch
( for only B&B solver )
>

‘ inheritance

B&B MAP-SVP
based »»x | (Our previous
solvers SVP solver)




Implementation of Our new solver

~2020 2021
>
UG refactoring almost Generalized UG
from scratch
( for only B&B solver )
> ‘
) ’ UG_BB
‘ inheritance ‘ inheritance
B&B MAP-SVP B&B CMAP-LAP
based === | (our previous based L (our new SVP
solvers SVP solver) solvers solver)

40



<«
Implementation of Our new solver

2021
>
Generalized UG provides
Generalized UG

* Customable and asynchronous

communication API for Task and ‘v

other information

- UG_BB

* Checkpointing and restart .

functionality ¥ Inheritance
e Both MPI and Pthread

communicators can be selected, B&B CMAP-LAP

and hybrid parallelization is based (our new SVP

: . solvers solver)
possible by combining them




. 4
Implementation of Our new solver

 Some data pool created in
LoadCoordinator for
sharing lattice basis and
vector, and checkpointing

— Basis Pool —, ,

— LoadCoordinator (LC)

42

Vector Pool - ~— Solver Pool —

Vec

Vec

J \\

11

[

Message Handler

J

'

"~ Solver

ParaSolver

Message Handler

Algorithm

|
basis _

v

Vec

Task

Receive
Task

* Parameters
* |nitial Status




Outline

4.System of our solver based on UG

\.

Topics
1. Overview

2. > Communication of Task

3. Asynchronously
Communication

4. Checkpointing

43




Task
Create Task

Task is Triple of

* |nstance
e Basis B € Z™*"

e Algorithm
* type of algorithm

e Parameters

e Parameters change during
execution of the algorithm

— LoadCoordinator (LC)

— Basis Pool — POP

44

—

~— Solver Pool —

"~ Solver

ParaSolver

Message Handler




Task

Send Task

Task is Triple of

Instance

Basis B € Z™*"

e Algorithm

type of algorithm

Parameters

Parameters change during
execution of the algorithm

— LoadCoordinator (LC)

— Basis Pool —,

45

~— Solver Pool —

"~ Solver

ParaSolver

|
v
Message Handler




<«
Asynchronously Communication

Receive Task

ParaSolver class object executes

runAlgorithm(

basis, parameters, this)
|l
ParaSolver object pointer

"~ Solver

ParaSolver Message Handler

Algorithm function 4>
REdUCtiOn == i Task * Parameters

"""""" S Ay R {—
e i m t. Initial Status




Asynchronously Communication

function runAlgorithm(basis, params, *paraSolver){
while( algorithm is not finished ){
runSubroutine(basis, params, paraSolver);
communicateTolLC(paraSolver);
// send or receive lattice vectors and basis

// asynchronously

47

"~ Solver

ParaSolver Message Handler

Algorithm function
~ Reduction

ﬂL—V)




Outline

4.System of our solver based on UG

\.

Topics

1. Overview
2. Communication of Task

3. [> Asynchronously
Communication

4. Checkpointing

48




Asynchronously Communication — non-blocking version —

run communicate

subroutine  to LC

—

Solver — k

Communicator —

-

.

Algorithm I

want to need the short vectors

~\

J

LoadCoordinator

49



- _____________________________-_______J
Asynchronously Communication — non-blocking version — 50

run communicate
subroutine  to LC
Algorithm .

—

Solver —
Communicator vector >
— request
\ ISend
LoadCoordinator vector .
request

e communicator send “vector request” to LC by Isend (MPI_Isend),
which is non-blocking function




Asynchronously Communication — non-blocking version — 51
run  communicate run
B subroutine  to LC subroutine
Algorithm L S
Solver — l IProbe
Communicator vector
— request
\ ISend
LoadCoordinator vector
request

* Solver return to running algorithm
* Insubroutine, iProbe (MPI_Iprobe) is called to check the message




.. Y
Asynchronously Communication — non-blocking version —

run

subroutine
Algorithm .
IProbe
Solver — l
Communicator vector
— request
\ ISend /ISend
LoadCoordinator vector [ vectors
request

* LC prepare vectors according to the vector request
e LCsend vectors by Isend (MPI_Isend)

52



.. Y
Asynchronously Communication — non-blocking version —

Solver —

—

Algorithm

Communicator

-

LoadCoordinator

run

subroutine

J IProbe

vectors

/ISend

vector
request

vectors

—_—

communicator receives vectors and keep them

53



.. Y
Asynchronously Communication — non-blocking version —

run communicate
subroutine to LC
Algorithm
IProbe
Solver — l /
Communicator vectors —{ vectors
/ISend

LoadCoordinator vectors

In the following communication part,
the algorithm can use the vector received by the communicator

54



- _____________________________-_______J
Asynchronously Communication — non-blocking version — 55

communicate run
to LC subroutine

Algorithm I

Solver — /

Communicator vectors

—

—

v

v

LoadCoordinator

* Then, Solver run subroutine again ...




Asynchronously Communication — non-blocking version — 56
un communicate Fun communicate un communicate
to LC , to LC , to LC
subroutine subroutine subroutine
Algorithm — e
Solver — /
Communicator vector vectors [— vectors
— request ;
\ ISend / ISend
LoadCoordinator vector —| vectors >
request

Delay replay to request

 Even if LC delays in replying to a vector request,
algorithm can receive vectors more next communication part
* SVP algorithm can incorporate vectors at any time




Outline

4.System of our solver based on UG

\.

Topics
1. Overview
2. Communication of Task

3. Asynchronously
Communication

4. [> Checkpointing

57




<«
Checkpointing 58

— LoadCoordinator (LC)

— Basis Pool —. ~— Solver Pool —

* Solver update task

according to the progress | Basis |

of algorithm J
T send&
* Solver send update Task to L_Task parameters | UPdate
LC, and LC replaces it from | Basis [N Initial Status

old task in solver pool

"~ Solver

ParaSolver Message Handler

Algorithm function
— Reduction —

- :;}‘_‘V:( 911 - __= _ dg:




Checkpointing

* Write compressed data in Solver
Pool into checkpointing files, and
data in other pools write to files, too

— LoadCoordinator (LC)

~— Solver Pool —

~ write checkpoint files

(Instance, Algorithm, Parameters)

for all solvers




. 4
Checkpointing

60

— LoadCoordinator (LC)
Restart

~— Solver Pool —
Load checkpoint file and store data into
solver pool

~ load checkpoint files

(Instance, Algorithm, Parameters)
for all solvers




. 4
Checkpointing

— LoadCoordinator (LC)
Restart

— Basis Pool —. ~— Solver Pool —

Load checkpoint file and

store data into solver pool | Basis |

"~ Solver ¥

ParaSolver Message Handler

Algorithm l

— Reduction — Task

= _ = * Parameters
S A e .




.
Outline

5. Numerical experiments

62



<«
Numerical Experiments

New solution for SVP Challenge

CMAP-LAP had succeeded in finding
shorter lattice vectors in

104, 111, 121, and 127
dimensions of the SVP Challenge.

CMAP-LAP finds a sufficiently short
vector in a reasonably short time.

* The G6K, a famous SVP solver,
reported taking
14 days = 336 hours
to find a sufficiently short vector for
a 127-dimensional lattice

63

TABLE 11
NEW SOLUTIONS FOR THE HALL OF FAME IN THE SVP
CHALLENGE [3], FOUND BY CMAP-LAP

Dim. | Seed | Norm | App. factor | #Process Total time
35 2516 0.97173 120 551 seconds
104 85 2520 0.97010 120 214 seconds
82 2529 0.97719 120 432 seconds
29 2597 0.96979 2000 792 seconds
111 30 2635 0.98382 2000 541 seconds
8 2660 0.99467 2000 611 seconds
121 4 2780 0.99706 2304 682 minutes
p. 2809 1.00820 2304 481 minutes
3" 2790 0.97573 91,200 147 hours
127° 1T | 2890 1.01429 9,980 31 hours
of 2898 1.01626 49,152 25 hours

*T We executed the CMAP-LAP several times on multiple computers,
as described in paragraph V-D0Oa. We list the maximum number of
processes and total approximate wall time among these executions
in the table.

T These solutions are not new records, but they are the same solution
as the previous record or very nearly close to it.

App. factor := approximation factor of the incumbent lattice vector



. 4
Numerical Experiments

New solution for SVP Challenge

CMAP-LAP had succeeded in finding
shorter lattice vectors in

104, 111, 121, and 127
dimensions of the SVP Challenge.

CMAP-LAP finds a sufficiently short
vector in a reasonably short time.

* The G6K, a famous SVP solver,
reported taking
14 days = 336 hours
to find a sufficiently short vector for
a 127-dimensional lattice

TABLE II

NEW SOLUTIONS FOR THE HALL OF FAME IN THE SVP

CHALLENGE [3], FOUND BY CMAP-LAP

Dim. | Seed | Norm | App. factor | #Process Total time
35 2516 0.97173 120 551 seconds
104 85 2520 0.97010 120 214 seconds
82 2529 0.97719 120 432 seconds
29 2597 0.96979 2000 792 seconds
111 30 2635 0.98382 2000 541 seconds
8 2660 0.99467 2000 611 seconds
121 4 2780 0.99706 2304 682 minutes
p. 2809 1.00820 2304 481 minutes
0.97573 91,200 147 hours
1.01429 9,980 31 hours
1.01626 49,152 25 hours J

*T We executed the CMAP-LAP several times on multiple computers,
as described in paragraph V-D0Oa. We list the maximum number of
processes and total approximate wall time among these executions
in the table.

T These solutions are not new records, but they are the same solution
as the previous record or very nearly close to it.

64



. 4
Numerical Experiments

New solution for SVP Challenge

CMAP-LAP had succeeded in finding
shorter lattice vectors in

104, 111, 121, and 127
dimensions of the SVP Challenge.

CMAP-LAP finds a sufficiently short
vector in a reasonably short time.

* The G6K, a famous SVP solver,
reported taking
14 days = 336 hours

to find a sufficiently short vector for
a 127-dimensional lattice

TABLE II

NEW SOLUTIONS FOR THE HALL OF FAME IN THE SVP
CHALLENGE [3], FOUND BY CMAP-LAP

Dim. | Seed | Norm | App. factor | #Process Total time
35 2516 0.97173 120 551 seconds
104 85 2520 0.97010 120 214 seconds
82 2529 0.97719 120 432 seconds
29 2597 0.96979 2000 792 seconds
111 30 2635 0.98382 2000 541 seconds
8 2660 0.99467 2000 611 seconds
121 4 2780 0.99706 2304 682 minutes
2 2809 1.00820 2304 481 minutes
0.97573 91,200 147 hours
1.01429 9,980 31 hours
1.01626 49.152 25 hours J

65



. 4
Numerical Experiments

New solution for SVP Challenge

CMAP-LAP had succeeded in finding
shorter lattice vectors in

104, 111, 121, and 127
dimensions of the SVP Challenge.

CMAP-LAP finds a sufficiently short
vector in a reasonably short time.

* The G6K, a famous SVP solver,
reported taking
14 days = 336 hours
to find a sufficiently short vector for
a 127-dimensional lattice

TABLE II

NEW SOLUTIONS FOR THE HALL OF FAME IN THE SVP
CHALLENGE [3], FOUND BY CMAP-LAP

Dim. | Seed | Norm | App. factor | #Process Total time
35 2516 0.97173 120 551 seconds

104 85 2520 0.97010 120 214 seconds
82 2529 0.97719 120 432 seconds
29 2597 0.96979 2000 792 seconds

111 30 2635 0.98382 2000 541 seconds
8 2660 0.99467 2000 611 seconds

121 4 2780 0.99706 2304 682 minutes
p. 2809 1.00820 2304 481 minutes
3 2790 0.97573 91,200 147 hours

127° 1T | 2890 1.01429 9,980 31 hours

R of 2898 1.01626 49,152 25 hours J

*T We executed the C

as

App. factor := estimated
approximation factor of the
incumbent solution

several times on multiple computers,

of

66



Numerical Experiments
Scalability

Scalability keeps even in the larger-scale, e.g.,
100,032 processes

Metric is Root Hermite Factor y1/™,
which is an index to measure
the output quality of a reduction algorithm

1/n
e (o
vol(L)1/n

where b is the shortest basis vector
output by reduction algorithm.

Smaller yl/" means that output quality is good

and find shorter vector

All solver run Reduction ( DeepBKZ ) algorithm

Root Hermite Factor

1.0110 A

1.0105 A

1.0100 A

1.0095 -

1.0090 A

1.0085 -

67

dimension 120

# of process = 1 (cal B + cal C)

# of process = 16 (cal B + cal C)
# of process = 64 (cal B + cal C)
# of process = 128 (cal B + cal C)
# of process = 100,032 (HLRN 1V)

——

T —
e B
|
0 1000 2000 3000 4000 5000 6000
Time [s]




. 4
Numerical Experiments 68

Sharing efficiency

e Execute with different vector pool size

* Size of pool =0 ( blue) 1015 dimension 150

. - = size of vector pool =0
< no Sharlng - Size of vector pool =1
° Size Of pOOI - 1 ( ora nge ) 1014 - -« sjze of vector pool = 100,000
& sharing only incumbent vector g 1013 |
* Size of pool =100,000 ( green ) °
. @ 1012 -
< sharing almost all short vectors £
% 1011 -
All solver run Reduction ( DeepBKZ ) 1S P I  E N A R R -
. o
algorithm o S PRESSNE IEPRIVR PR R L
1009 -
With the effect of sharing vectors, 1008

i 0 2500 5000 7500 10000 12500 15000 17500
the Root Hermite Factor could get smaller time [s]



Numerical Experiments

Heterogeneously efficiency

Execute with different algorithm
configuration

#(Reduction, Enumeration, Sieve)

= (143,
= (126,
= (110,
= (78,

0,

16,
32,
64,

0) ( blue)
1) (orange)
1) (green)
1) (red)

69

Dimension 130

1.01100 -
1.01075 -
1.01050
1.01025 A1
1.01000 A1

1.00975 -

Root Hermite Factor

1.00950 1

—— Reduction 143 Enumeratioin 0 Sieve 0
- == Reduction 126 Enumeratioin 16 Sieve 1
— = Reduction 110 Enumeratioin 32 Sieve 1
----- Reduction 78 Enumeratioin 64 Sieve 1

1.00925 A1




Numerical Experiments

Heterogeneously efficiency

Execute with different algorithm
configuration

 #(Reduction, Enumeration, Sieve)
e =(143, 0O, 0) ( blue)
e =(126, 16, 1)(orange)
e =(110, 32, 1)(green)
e =(78, 64, 1)(red)

e There was difference in results
depending on the configuration

e For further improvement,
it iIs necessary
* tuning parameters
 dynamic modification of the

70

Dimension 130

1.01100 -
1.01075 -

1.01050 -

1.01025 -

1.01000

1.00975 -

Root Hermite Factor

1.00950 1

1.00925 A1

—— Reduction 143 Enumeratioin 0 Sieve 0
- == Reduction 126 Enumeratioin 16 Sieve 1
— = Reduction 110 Enumeratioin 32 Sieve 1
Reduction 78 Enumeratioin 64 Sieve 1

— Future work

configuration

—




Numerical Experiments: communication overhead 71

Parallelization performance of UG

start idle time of each solver

. 10! I I
n

o 1004

E

:r 2220 TT1T

* Definition of idle times L
10—2_
16 32 48 64 84 104 124 144 180 1024 2048
ITO  ITO
start . wait idle time of each solver
R 10~
Lic @ >
) ] 210—3_
distributes send / receive v
start instance vectors = 107 4 :[ :[ :[ :[
. : 10_7 T T T T T T T T T T T
Solver 16 32 48 64 84 104 124 144 180 1024 2048

\ ) ITO ITO

8TotaI number of communications between LC and Solvers

. . 1
start idle time 105 | M_/./.

=
g 104 ’._——.
©) 4
102 A ....-o—-—o—--&——c———o———o———a——-o’ ~® - send
-0~ receive

16 32 48 64 84 104 124 144 180 1024 2048
ITO ITO

Number of processes



. 4
Numerical Experiments: communication overhead 72

Parallelization performance of UG

CMAP-LAP ran for two hours with
100-dimensional SVP as input

As the number of processes increases,
the LC’s load increases

Although the LC's load increases, idle
time is much less than the total
running time per hour.

Time [s]

start idle time of each solver

102
101 I I
1009
1072
16 32 48 64 84 104 124 144 180 1024 2048
ITO ITO
. wait idle time of each solver
10~
1073
b bl
10_7 T T T T T T T T T T T
16 32 48 64 84 104 124 144 180 1024 2048
ITO ITO
108TotaI number of communications between LC and Solvers
10° ./.__"___._Q———O——-Q—"’_././.
104 ’._—-—.
102 g @m—@mm - @-m == @--=@  ~® send
-0 receive

16 32 48 64 84 104 124 144 180 1024 2048
ITO ITO
Number of processes



Summary

v' We developed a parallel solver for SVP based on Generalized UG

v’ Supervisor-Worker parallelization type

v Heterogeneous algorithm execution (— Solver A —
v" Acceleration by asynchronously - Reduction
sharing lattice vectors ~  Algorithm
— LoadCoordinator < y
— Solver B
Basis Pool
Enumeration
Algorithm
Solver C
Vector Pool Sieve
Algorlthm
11111 ] : x
N\ J

v’ Update some SVP Challenge records

v Show scalability and low communication overhead
sharing and heterogeneously efficiency of our solver



