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Structured mixed integer programming
Basic idea: Minimise a linear objective function over a set of solutions
satisfying a structured set of linear constraints.

min ¢c'x+d'y,
subject to Ax > b,
Bx+ Dy > g,
x >0,
y =0,
X € ZPt x Rm—P1
y € ZP* x R™™P2,
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Decomposition methods for mixed integer programming

Block 1
Block 2

Block 3

Linking variables

» Variable decomposition

> Existence of a set of linking variables

» Exploits property of restriction, i.e. blocks are “easy” to solve after
fixing variables

» Parallelisation: each block can be solved in parallel.
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Benders' decomposition
Original problem

min ¢c'x+d'y,
subject to Ax > b,
Bx+ Dy > g,
x >0,
y =0,
X € ZPr x Rm—p1,
y € R™.
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Benders' decomposition

min ¢’ x+ f(x),
subject to Ax > b,
x >0,
x € ZP* x RM~P,

where

f(x)= m>ir3{dTy\Bx+ Dy > g, y € R™}
y>
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Benders' decomposition
min ¢’ x+ f(x),
subject to Ax > b,

x >0,
x € ZPr x Rm™Pr,

where

f(x)= m>ir3{dTy\Bx+ Dy > g, y € R™}
y>

equivalently, using the dual formulation we can define

f'(x) = rpza())({u—r(g —Bx)|DTu>d", ucR™}
(F'(x) = £(x))
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Benders' decomposition
Using the dual formulation of f(x), given by

f'(x) = m>a(>)<{uT(g —Bx)|DTu>d", ueR™}

let
» O be the set of all extreme points of f'(x)
> F be the set of all extreme rays of f/(x)

an equivalent formulation of the original problem is
min ¢’ x4+ ¢,
subject to Ax > b,
o>u'(g—Bx) YueO
0>u'(g—Bx) YueF
x 20,
x € ZPr x Rm~P,
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Benders' decomposition

» The sets O and F are exponential in size

» The reformulated original problem becomes intractable
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Benders' decomposition

» The sets O and F are exponential in size
» The reformulated original problem becomes intractable

> Need to use a delayed constraint generation algorithm
Cut generating LP < Benders’ subproblem
z(X) =min d'y,
subject to Dy > g — BX,

y >0,
y € R™,
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Standard Benders' implementation

Solve master problem |

Solve subproblems

Yes - add c
No

» Easy to understand and simple to implement.

» Not always effective, large overhead in repeatedly solving master
problem.
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Standard Benders' implementation

Solve master problem |

Solve subproblems

Yes - add c
No

» Easy to understand and simple to implement.

» Not always effective, large overhead in repeatedly solving master
problem.

» Easily parallelisable. All subproblems can be solved in parallel.

» Not always efficient—master problem is still solved sequentially.
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Branch-and-cut

» Modern solvers pass through a number of different stages during
node processing.

> Some of these stages can be used to generate Benders' cuts.

» By interrupting node processing, Benders' cuts are generated during
the tree search.

Solving process

Presolving J

\ Domain propagation |

Stop
/l Solve LP

Node selecﬂle Pricing
IP feas.
Processing — J

LP inf. { Enforce constraints l—_)

| Primal heuristics | IP inf. | LP feas.

Conflict analysis

Branching
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Branch-and-cut
» Modern solvers pass through a number of different stages during
node processing.
> Some of these stages can be used to generate Benders' cuts.
» By interrupting node processing, Benders' cuts are generated during
the tree search.

Cut generation - Branch-and-cut

\ Domain propagation

Stop
/
Node selection |(~

IP feas.

Solve LP

Pricing

Conflict analysis

Processing —

LP inf.

IP inf. | LP feas.

Branching
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Branch-and-cut — parallelisation

» Many software implementations for the parallelisation of
branch-and-cut, such as the UG framework.

> Useful if solving the subproblems sequentially is not time consuming.

» Addresses issues related to difficult master problem.
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Hybrid parallelisation

» Parallelise the branch-and-cut tree search using the UG framework
(distributed memory).

» Parallelise the solving of the subproblems using OpenMP (shared
memory).
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Hybrid parallelisation
» Parallelise the branch-and-cut tree search using the UG framework
(distributed memory).
» Parallelise the solving of the subproblems using OpenMP (shared
memory).

Benefits
» Parallelisation of tree search avoids waiting for difficult master
problem solves.
» Solving the subproblems in parallel takes advantage of available
cores at each node.
» Able to balance the effort between master problem tree search and
subproblem solving.
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Current status and features
» Both tree search and subproblem parallelisation available.
> Tree search parallelisation activated by enabling Benders' framework.
» Subproblem parallelisation enabled by setting the number of threads.
SCIP must be built with OpenMP.
» Customisable sorting of subproblems for load balancing
> Prioritise subproblems with less calls, then by average number of LP
iterations.
» Parallelisation relies on transfer of Benders' cuts between solvers. By
calling SCIPstoreBendersCut in custom Benders' cuts plugins,
custom Benders' decomposition implementations can be parallelised.
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Current challenges
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Design Issues

» Each Benders' subproblem is implemented as a SCIP instance.

» With a large number of subproblems memory consumption can be
very high.
» When parallelising the tree search, the subproblems must be copied
to every solver.
> Large number of solvers and large number of subproblems results in
a very high memory consumption.

13/17



Design Issues

=
EENEEEEENEENEEEEEAEENEENEENEENEENEREE
» Each Benders' subproblem is implemented as a SCIP instance.
» With a large number of subproblems memory consumption can be
very high.
» When parallelising the tree search, the subproblems must be copied
to every solver.

> Large number of solvers and large number of subproblems results in
a very high memory consumption.

13/17



Memory saving mode

» Subproblems, especially in the context of stochastic programming,
may have very similar structures.

» differences only in the constraint matrix or objective function
coefficients or in the RHS.

» Create a SCIP instance per each thread. Using a subproblem
difference create each subproblem on the fly.

Disadvantage
» Only applicable when subproblems have similar structures
» Does not benefit from warm starting between subproblem solves

» Creating and destroying subproblems is time consuming
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Load balancing

» Current best balance of shared and distributed memory unclear

» Benders' cuts are not generated at all nodes in the tree, so reserving
threads for subproblem solving may be inefficient.

» Automatic load balancing would allow for idle threads to be used for
alternative purposes.
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Partial node processing
» Only solve a subset of subproblems at each node in the tree.
Delaying the complete processing of the node.

» The node is not fully evaluated, but enough cuts may be generated
to improve the bound.

> |dentify the balance of the number of subproblems to solve to gain
sufficient bound improvement.
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Key points
» Hybrid parallel implementation of Benders' decomposition available
in SCIP
» Current version is available to solve smaller scale problems.

» Future development will reduce the memory consumption of the
Benders' framework, enabling its use on large problems and large
computational resources.

» Improved load balancing and partial node processing will be
investigated.
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