Large-scale parallelisation for the Benders' decomposition framework in SCIP

Stephen J. Maher

University of Exeter,

@sj_maher

s.j.maher@exeter.ac.uk

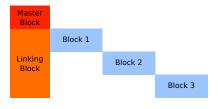
October 1, 2021

Structured mixed integer programming

Basic idea: Minimise a linear objective function over a set of solutions satisfying a structured set of linear constraints.

min $c^{\top}x + d^{\top}y$, subject to $Ax \ge b$, $Bx + Dy \ge g$, $x \ge 0$, $y \ge 0$, $x \in \mathbb{Z}^{p_1} \times \mathbb{R}^{n_1 - p_1}$, $y \in \mathbb{Z}^{p_2} \times \mathbb{R}^{n_2 - p_2}$.

Decomposition methods for mixed integer programming



Linking variables

Variable decomposition

- Existence of a set of linking variables
- Exploits property of restriction, i.e. blocks are "easy" to solve after fixing variables
- > Parallelisation: each block can be solved in parallel.

Benders' decomposition Original problem

min $c^{\top}x + d^{\top}y$, subject to $Ax \ge b$, $Bx + Dy \ge g$, $x \ge 0$, $y \ge 0$, $x \in \mathbb{Z}^{p_1} \times \mathbb{R}^{n_1 - p_1}$, $y \in \mathbb{R}^{n_2}$.

$$egin{array}{lll} \min & c^ op x + f(x), \ {
m subject to} & {\cal A}x \geq b, \ & x \geq 0, \ & x \in \mathbb{Z}^{p_1} imes \mathbb{R}^{n_1 - p_1}. \end{array}$$

where

$$f(x) = \min_{y \ge 0} \{ d^\top y \mid Bx + Dy \ge g, \ y \in \mathbb{R}^{n_2} \}$$

$$\begin{array}{ll} \min & c^\top x + f(x),\\ \text{subject to} & Ax \geq b,\\ & x \geq 0,\\ & x \in \mathbb{Z}^{p_1} \times \mathbb{R}^{n_1 - p_1}. \end{array}$$

where

$$f(x) = \min_{y \ge 0} \{ d^\top y \, | \, Bx + Dy \ge g, \, y \in \mathbb{R}^{n_2} \}$$

equivalently, using the dual formulation we can define

$$f'(x) = \max_{u \ge 0} \{ u^{ op}(g - Bx) | D^{ op} u \ge d^{ op}, u \in \mathbb{R}^{m_2} \}$$

 $(f'(x) = f(x))$

Using the dual formulation of f(x), given by

$$f'(x) = \max_{u \ge 0} \{ u^{ op}(g - Bx) \, | \, D^{ op} u \ge d^{ op}, \, u \in \mathbb{R}^{m_2} \}$$

let

- \mathcal{O} be the set of all extreme points of f'(x)
- \mathcal{F} be the set of all extreme rays of f'(x)

an equivalent formulation of the original problem is

$$\begin{array}{ll} \min & c^{\top}x + \varphi,\\ \text{subject to} & Ax \geq b,\\ & \varphi \geq u^{\top}(g - Bx) \quad \forall u \in \mathcal{O}\\ & 0 \geq u^{\top}(g - Bx) \quad \forall u \in \mathcal{F}\\ & x \geq 0,\\ & x \in \mathbb{Z}^{p_1} \times \mathbb{R}^{n_1 - p_1}. \end{array}$$

- \blacktriangleright The sets ${\mathcal O}$ and ${\mathcal F}$ are exponential in size
- The reformulated original problem becomes intractable

- \blacktriangleright The sets ${\cal O}$ and ${\cal F}$ are exponential in size
- The reformulated original problem becomes intractable

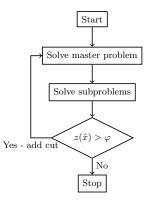
Need to use a delayed constraint generation algorithm

- \blacktriangleright The sets ${\cal O}$ and ${\cal F}$ are exponential in size
- The reformulated original problem becomes intractable
- Need to use a delayed constraint generation algorithm

Cut generating LP \Leftrightarrow Benders' subproblem

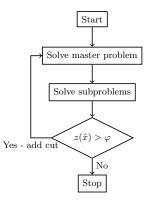
$$egin{aligned} &z(\hat{x}) = \min \quad d^{ op}y, \ & ext{subject to} \quad Dy \geq g - B\hat{x}, \ &y \geq 0, \ &y \in \mathbb{R}^{n_2}. \end{aligned}$$

Standard Benders' implementation



- Easy to understand and simple to implement.
- Not always effective, large overhead in repeatedly solving master problem.

Standard Benders' implementation

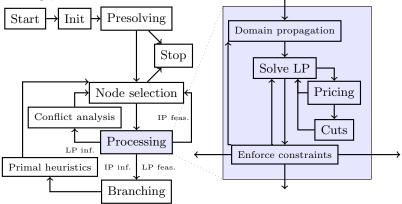


- Easy to understand and simple to implement.
- Not always effective, large overhead in repeatedly solving master problem.
- Easily parallelisable. All subproblems can be solved in parallel.
- Not always efficient—master problem is still solved sequentially.

Branch-and-cut

- Modern solvers pass through a number of different stages during node processing.
- Some of these stages can be used to generate Benders' cuts.
- By interrupting node processing, Benders' cuts are generated during the tree search.

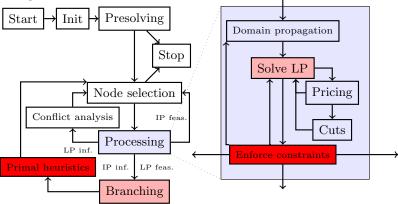
Solving process



Branch-and-cut

- Modern solvers pass through a number of different stages during node processing.
- Some of these stages can be used to generate Benders' cuts.
- By interrupting node processing, Benders' cuts are generated during the tree search.

Cut generation - Branch-and-cut



Branch-and-cut - parallelisation

- Many software implementations for the parallelisation of branch-and-cut, such as the UG framework.
- Useful if solving the subproblems sequentially is not time consuming.
- Addresses issues related to difficult master problem.

Hybrid parallelisation

- Parallelise the branch-and-cut tree search using the UG framework (distributed memory).
- Parallelise the solving of the subproblems using OpenMP (shared memory).

Hybrid parallelisation

- Parallelise the branch-and-cut tree search using the UG framework (distributed memory).
- Parallelise the solving of the subproblems using OpenMP (shared memory).

Benefits

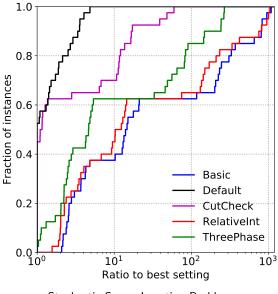
- Parallelisation of tree search avoids waiting for difficult master problem solves.
- Solving the subproblems in parallel takes advantage of available cores at each node.
- Able to balance the effort between master problem tree search and subproblem solving.

Current status and features

Both tree search and subproblem parallelisation available.

- Tree search parallelisation activated by enabling Benders' framework.
- Subproblem parallelisation enabled by setting the number of threads. SCIP must be built with OpenMP.
- Customisable sorting of subproblems for load balancing
 - Prioritise subproblems with less calls, then by average number of LP iterations.
- Parallelisation relies on transfer of Benders' cuts between solvers. By calling SCIPstoreBendersCut in custom Benders' cuts plugins, custom Benders' decomposition implementations can be parallelised.

Current challenges



Stochastic Server Location Problem

Design Issues

- Each Benders' subproblem is implemented as a SCIP instance.
- With a large number of subproblems memory consumption can be very high.
- When parallelising the tree search, the subproblems must be copied to every solver.
 - Large number of solvers and large number of subproblems results in a very high memory consumption.

Design Issues

- Each Benders' subproblem is implemented as a SCIP instance.
- With a large number of subproblems memory consumption can be very high.
- When parallelising the tree search, the subproblems must be copied to every solver.
 - Large number of solvers and large number of subproblems results in a very high memory consumption.

Memory saving mode

- Subproblems, especially in the context of stochastic programming, may have very similar structures.
 - differences only in the constraint matrix or objective function coefficients or in the RHS.
- Create a SCIP instance per each thread. Using a subproblem difference create each subproblem on the fly.

Disadvantage

- Only applicable when subproblems have similar structures
- Does not benefit from warm starting between subproblem solves
- Creating and destroying subproblems is time consuming

Load balancing

- Current best balance of shared and distributed memory unclear
- Benders' cuts are not generated at all nodes in the tree, so reserving threads for subproblem solving may be inefficient.
- Automatic load balancing would allow for idle threads to be used for alternative purposes.

Partial node processing

- Only solve a subset of subproblems at each node in the tree. Delaying the complete processing of the node.
- The node is not fully evaluated, but enough cuts may be generated to improve the bound.
- Identify the balance of the number of subproblems to solve to gain sufficient bound improvement.

Key points

- Hybrid parallel implementation of Benders' decomposition available in SCIP
- Current version is available to solve smaller scale problems.
- Future development will reduce the memory consumption of the Benders' framework, enabling its use on large problems and large computational resources.
- Improved load balancing and partial node processing will be investigated.